Social wasps captured by the spider Trichonephila clavipes (L.) in anthropogenic environments associated with Atlantic Forest fragments in southern Minas Gerais, Brazil
Abstract
Spiders are found in diverse natural ecosystems and urban environments, exhibiting a broad variety of morphological characteristics and prey-capture strategies. These arthropods play important functions in trophic chains, acting as both predators and prey, which is of great relevance for ecosystem management and biological control in agricultural systems. This study aimed to identify social wasps captured by Trichonephila clavipes (L., 1767) in anthropogenic areas associated with semideciduous seasonal forest fragments. The study was conducted in 2023 in anthropogenic areas associated with Atlantic Forest fragments in southern Minas Gerais, Brazil. Two individuals of Protopolybia sedula (de Saussure, 1854) were recorded. The specimens were captured in suspended webs of T. clavipes. Given the paucity of information on this interaction, further research is needed to better understand the frequency and impact of the relationship on social wasp populations.
Downloads
References
Bartoleti, L. F. de M., Peres, E. A., Fontes, F. von H. M., Silva, M. J. da., & Solferini, V. N. (2018). Phylogeography of the widespread spider Nephila clavipes (Araneae: Araneidae) in South America indicates geologically and climatically driven lineage diversification. Journal of Biogeography, 40(6): 1246-1260. https://doi.org/10.1111/jbi.13217
Brescovit, A. D., Oliveira, U. de., & Santos, A. J. dos. (2011). Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotropica, 11: 717-747. https://doi.org/10.1590/S1676-06032011000500035
Brock, R. E., Cini, A., & Sumner, S. (2021). Ecosystem services provided by aculeate wasps. Biological Reviews, 96(4): 1645-1675. https://doi.org/10.1111/brv.12719.
Campbell, J. W., Milne, M., Dinh, B. T., Daniels, J. C., & Ellis, J. D. (2020). Spider (Araneae) abundance and species richness comparison between native wildflower plantings and fallow controls in intensively managed agricultural areas. Arthropod-plant interactions, 14: 263-274. https://doi.org/10.1007/s11829-019-09725-9
Castanheira, P., Pérez-González, A., & Baptista, R. L. (2016). Spider diversity (Arachnida: Araneae) in Atlantic Forest areas at Pedra Branca State Park, Rio de Janeiro, Brazil. Biodiversity Data Journal, (4): e7055. https://doi.org/10.3897/BDJ.4.e7055
Díaz, L. F. de C. (2005). Nephila clavipes los milagros de la seda. Disponível em: https://itlab.us/spider_2002/spanish_nephila.pdf
Dias, S. C., Brescovit, A. D., Couto, E. C. G., & Martins, C. F. (2006). Species richness and seasonality of spiders (Arachnida, Araneae) in an urban Atlantic Forest fragment in Northeastern Brazil. Urban Ecosystems, 9: 323-335. https://doi.org/10.1007/s11252-006-0002-7
Gibo, D. L., & Metcalf, R. A. (1978). Early survival of Polistes apachus (Hymenoptera: Vespidae) colonies in California: a field study of an introduced species. The Canadian Entomologist, 110(12): 1339-1343. https://doi.org/10.4039/Ent1101339-12
Hénaut, Y., Machkour-m’rabet, S., Winterton, P., & Calmé, S. (2010). Insect attraction by webs of Nephila clavipes (Araneae: Nephilidae). The Journal of Arachnology, 38(1): 135-138. https://doi.org/10.1636/T08-72.1
Higgins, L. E. (1987). Time budget and prey of Nephila clavipes (Linnaeus)(Araneae, Araneidae) in southern Texas. The Journal of Arachnology, 15(3):401-417.
Jäger, P., Arnedo, M. A., Azevedo, G. H. F., Baehr, B., Bonaldo, A. B., Haddad, C. R., Harms, D., Hormiga, G., Labarque, F. M., Muster, C., Ramírez, M. J., & Santos, A. J. (2021). Twenty years, eight legs, one concept: describing spider biodiversity in Zootaxa (Arachnida: Araneae). Zootaxa, 4979(1): 131–146. https://doi.org/10.11646/zootaxa.4979.1.14
Jeanne, R. L. (1972). Social biology of the neotropical wasp Mischocyttarus drewseni. Bulletin of the Museum of Comparative Zoology of Harvard University, 144: 63-150.
Litte, M. (1977). Behavioral ecology of the social wasp, Mischocyttarus mexicanus. Behavioral Ecology and Sociobiology, 2: 229-246.
Marques, M. R., Mendes, M. A., Tormena, C. F., Souza, B. M., César, L. M. M., Rittiner, R., & Palma, M. S. (2005). Structure determination of a tetrahydro‐β‐carboline of arthropod origin: A novel alkaloid‐toxin subclass from the web of spider Nephila clavipes. Chemistry & biodiversity, 2(4): 525-534. https://doi.org/10.1002/cbdv.200590034.
Mendes, L. W., Netto, J. C., Barbieri, E. F., Guarda, D. D., & Braga, M. R. B. (2010). Influence of Prey Size on the Capture of Social Wasps (Hymenoptera: Vespidae) by the Orb-Web Spider Nephilengys cruentata. Sociobiology, 56(3): 745-754.
Moura, P. A. , Jacques, G. C. , Guedes, G. T., & Souza, M. M. (2022). A tarântula Lasiodora sp. (Araneae, Theraphosidae) feeding on a groundsnake Atractus pantostictus (Squamata, Dipsadidae). Herpetologia brasileira, 11(2): 77-83. https://doi.org/10.5281/zenodo.6867834
Nyffeler, M. & Birkhofer, K. (2017) An estimated 400–800 million tons of prey are annually killed by the global spider community. The Science of Nature, 104(30): 1-12. https://doi.org/10.1007/s00114-017-1440-1
Nogueira, A. A., Brescovit, A. D., Perbiche-Neves, G., & Venticinque, E. M. (2021). Beta diversity along an elevational gradient at the Pico da Neblina (Brazil): is spider (Arachnida-Araneae) community composition congruent with the Guayana region elevational zonation?. Diversity, 13(12): 620. https://doi.org/10.3390/d13120620
Pereira, M., & Pires, V. M.(2020). Levantamento da araneofauna associada à cultura da uva (Vitis spp.) no município de São Roque e o estudo da viabilidade do uso desses animais no controle biológico de pragas na videira. Brazilian Journal of Development, 6(7): 51424-51443. https://doi.org/10.34117/bjdv6n7-694
Prezoto, F., Maciel, T. T.; Detoni, M., Mayorquin, A. Z., & Barbosa, B. C. (2019). Pest control potential of social wasps in small sarms and urban gardens. Insects, 10(7): 192. https://doi.org/10.3390/insects10070192
Robinson, M. H., & Mirick, H. (1971). The Predatory Behavior of the Golden-Web Spider Nephila Clavipes (Araneae: Araneidae). Psyche: a Journal of Entomology, 78(3): 123-139. https://doi.org/10.1155/1971/57182
Rosa, M. G. da., Santos, J. C. P., Brescovit, A. D., Mafra, Á. L., & Baretta, D. (2018). Spiders (Arachnida: Araneae) in Agricultural Land Use Systems in Subtropical Environments. Revista Brasileira de Ciência do Solo, 42: e0160576. https://doi.org/10.1590/18069657rbcs20160576
Salles, H. C., Volsi, E. C. F. R., Marques, M. R., Souza, B. M., Santos, L. D. dos., Tormena, C. F., Mendes, M. A., & Palma, M. S. (2006). The venomous secrets of the web droplets from the viscid spiral of the orb‐weaver spider Nephila clavipes (Araneae, Tetragnatidae). Chemistry & biodiversity, 3(7): 727-741. https://doi.org/10.1002/cbdv.200690075.
Yoshikawa, K. (1963). Introductory studies on the life economy of Polistine wasps. III. Social stage. J. Biol. Osaka University., 14: 63-66.
Young, O. P., & Edwards, B. (1990). Spiders in United States field crops and their potential
effect on crop pests. Journal of Arachnology, 18: 1‑27.
Wilson, E. E., Mullen, L. M., & Holway, D. A. (2009). Life history plasticity magnifies the ecological effects of a social wasp invasion. Proceedings of the National Academy of Sciences, 106(31): 12809-12813. https://doi.org/10.1073/pnas.09029791
World Spider Catalog (2021). World Spider Catalog. Version 22.0. Natural History Museum Bern. https://doi.org/10.24436/2