The effects of tropospheric ozone on plant species: New perspectives

Abstract

The effect of tropospheric ozone on the physiology of plants has been well established using physicochemical analysis and visual assessment. One of the main metabolic processes, in plants that is affected by ozone, is photosynthesis. This in turn affects a number of secondary processes required for the survival of plants. This study focused on two main aspects; the qualitative determination of damage through visual assessment and the quantification of damage through the determination of the content of chlorophyll and other quality parameters using spectrophotometric techniques in a number of plant species. Three distinct setups were considered, mainly rural, urban and semiurban, representing the topography of the islands of Malta and Gozo. It was observed that chlorosis was not the sole factor contributing to the yellowing of the leaves. Another important finding was the correlation between ozone levels (50.18-69.35 ppb) and the anthocyanin content (2.57-28.99 mg/kg) of leaves. From the three plant species that were extensively studied (Nerium oleander, Pinus halepensis and Schinus terebinthifolius), the N. oleander exhibited promising results as a bioindicator for ozone-induced damage. Due to the presence of this ornamental plant in rural and urban areas, it can be used by researchers and authorities as a tool for assessment of tropospheric ozone levels.

Downloads

Download data is not yet available.

References

Agathokleous, E., Saitanis, C. J., Feng, Z., De Marco, A., Araminiene, V., Domingos, M., Sicard, P., & Paoletti, E. (2020). Ozone biomonitoring: A versatile tool for science, education and regulation. Current Opinion in Environmental Science & Health, 18, 7-13. doi: 10.1016/j.coesh.2020.04.005
Burkey, K. O., Booker, F. L., Ainsworth, E. A., & Nelson, R.L. (2012). Field assessment of a snap bean ozone bioindicator system under elevated ozone and carbon dioxide in a free air system. Environmental Pollution, 166, 167-171. doi: 10.1016/j.envpol.2012.03.020
Chu, A., Zhang, Y., & Tian, Y. (2012). Physiological changes of leaves of several fall color trees during color changing period in autumn and winter. Journal of Northeast Forestry University, 40(11), 40-43.
DIRECTIVE 2001/81/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2001 on national emission ceilings for certain atmospheric pollutants, Official Journal of the European Communities, L 309, 22-30.
DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe, Official Journal of the European Union, L 152, 1-44.
European Environment Agency (EEA). (2019). Air Quality in Europe. Luxembourg: European Environment Agency. Recovered from: https://www.eea.europa.eu/publications/air-quality-in-europe-2019. doi:10.2800/822355
Environmental Protection Agency (EPA). 2015. National Ambient Air Quality Standards (NAAQS) for Ozone: Final rule, Federal Register, 80(206), 65292-65468
European Topic Centres on Air Pollution, Transport, Noise and Industrial Pollution (ETC/ATNI). (2020). European air quality maps for 2018 — PM10, PM2.5, ozone, NO2 and NOX spatial estimates and their uncertainties, Eionet Report ETC/ATNI 10/2020, European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution, Norway Recovered from: https://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etc-atni-report-10-2020-european-air-quality-maps-for-2018-pm10-pm2-5-ozone-no2-and-nox-spatial-estimates-and-their-uncertainties-1
Feng, H., Chen, G., Xiong, L., Liu, Q., & Yang, W. (2017). Accurate digitization of the chlorophyll distribution of individual rice leaves using hyperspectral imaging and an integrated image analysis pipeline. Frontiers in Plant Science, 8, 1238. doi: 10.3389/fpls.2017.01238
Giri, S., Shrivastava, D., Deshmukh, K., & Dubey, P. (2013). Effects of Air Pollution on Chlorophyll Content of Leaves. Current Agriculture Research Journal, 1(2), 93-98. doi: 10.12944/CARJ.1.2.04
Glories, Y. (1984). La couleur des vins rouges: 2e. Partie: mesure, origine et interpretation. Connaissance de la Vigne et du Vin, 18(4), 253–271. doi: 10.20870/oeno-one.1984.18.4.1744
Gottardini, E., Cristofolini, F., Cristofori, A., & Ferretti, M. (2014). Ozone risk and foliar injury on Viburnum lantana L.: a meso-scale epidemiological study. Science of the Total Environment, 493, 954-960. doi: 10.1016/j.scitotenv.2014.06.041
Guicherit, R. (1988). Ozone on an Urban and Regional Scale. In: I. S. A. Isaksen (Ed) Tropospheric Ozone. NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 227. Springer, Dordrecht. doi: 10.1007/978-94-009-2913-5_3
Harborne, A. J. (2012). Phytochemical methods: A guide to modern techniques of plant analysis. London: Chapman & Hall. doi: 10.1007/978-94-009-5921-7
Holland, M., Kinghorn, S., Emberson, L., Cinderby, S., Ashmore, M., Mills, G., & Harmens, H. (2006). Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. Bangor: NERC/Centre for Ecology and Hydrology Publisher.
Hopkins, W. G., & Hüner, N. P. (2008). Introduction to Plant Physiology. The University of Western Ontario: John Wiley & Sons, Inc.
Ibrahim, M., Jaafar, H., Karimi, E., & Ghasemzadeh, A. (2014). Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity. The Scientific World Journal. doi: 10.1155/2014/360290
Knudson, L. L., Tibbits, W. T., & Edwards, G. E. (1977). Measurement of Ozone Injury by Determination of Leaf Chlorophyll concentration. Plant Physiology, 60, 606-608. doi: 10.1104/pp.60.4.606.
Lavoie, G. A., Heywood, J. B., & Keck, J. C. (1970). Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combustion Science and Technology, 1(4), 313-326. doi: 10.1080/00102206908952211
Le Houérou, H. N. (1981). Impact of man and his animals on Mediterranean vegetation. In: di Castri, F., Goodall, D. W., & Specht R. L., eds. Mediterranean-Type Shrublands. Ecosystems of the World. Amsterdam: Elsevier
Li, Y., Yang, S., Jingmin, J., & Jun, L. (2019). Spectroscopic determination of leaf chlorophyll content and color for genetic selection on Sassafras tzumu. Plant Methods, 15(1) 1-11. doi: 10.1186/s13007-019-0458-0
Macdowell, F. (1965). Stages of Ozone Damage to Respiration of Tobacco Leaves. Canadian Journal of Botany, 43(4), 420-427.
Masri, S., Hou, H., Dang, A., Yao, T., Zhang, L., Wang, T., Qin, Z., Wu, S., Han, B., Chen, J., Chen, Y., Wu, J. (2019). Development of spatiotemporal models to predict ambient ozone and NOx concentrations in Tianjin, China. Atmospheric Environment, 213, 37-46. doi : 0.1016/j.atmosenv.2019.05.060
Meletiou-Christou, M. S., Banilas, G. P., Bardis, C., & Rhizopoulou, S. (2011). Plant biomonitoring: impact of urban environment on seasonal dynamics of storage substances and chlorophylls of oleander. Global NEST Journal, 13(4), 395-404.
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., Xu, X. (2018). Tropospheric Ozone Assessment Report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa: Science of the Anthropocene, 6(1). doi: 10.1525/elementa.302
Milne, B., Toker, Y., Rubio, A., & Brøndsted Nielsen, S. (2015). Unraveling the Intrinsic Color of Chlorophyll. Angewandte Chemie International Edition, 54(7), 2170-2173. doi: 10.1002/anie.201410899
Monk, R., & Murray, F. (1995). The Relative Tolerance of Some Eucalyptus Species to Ozone Exposure. Water, Air, & Soil Pollution, 85, 1405-1411. doi : 10.1007/BF00477178
Moser, S., Ulrice, M., & Müllera, T. (2008). A yellow chlorophyll catabolite is a pigment of the fall colours. Photochemical and Photobiological Sciences, 8, 1577-1581. doi: 10.1039/b813558d
Ougham, H. J., Morris, P., & Thomas, H. (2005). The Colors of Autumn Leaves as Symptoms of Cellular Recycling and Defenses Against Environmental Stresses. Current Topics in Developmental Biology, 66(1), 135-160. doi: 10.1016/S0070-2153(05)66004-8
Owusu, J., Ma, H., Abano, E. E., & Engmann, F. N. (2012). Influence of two inocula levels of Saccharomyces bayanus, BV 818 on fermentation and physico-chemical properties of fermented tomato (Lycopersicon esculentum Mill.) juice. African Journal of Biotechnology, 11(33), 8241-8249. doi: 10.5897/AJB11.4300
Paoletti, E., De Marco, A., Beddows, D. C., Harrison, R. M., & Manning, W. J. (2014). Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution, 192, 295-299. doi: 10.1016/j.envpol.2014.04.040
Rautio, P., Fürst, A., Stefan, K., Raitio, H., & Bartels, U. (2016). Part XII: Sampling and Analysis of Needles and Leaves. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and. Thünen Institute of Forest Ecosystems, Eberswalde, Germany: United Nations Economic Commission for Europe (UNECE).
Schaub, M., Calatayud , V., Ferretti , M., Brunialti, G., Lövblad, G., Krause, G., & Sanz, M. (2016). Part VIII: Monitoring of Ozone Injury. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual. Thünen Institute of Forest Ecosystems, Eberswalde: United Nations Economic Commission for Europe (UNECE).
Schreiber, V. (1996). A synoptic climatological evaluation of surface ozone concentrations in Lancaster Country, Pennsylvania. Millersville University of Pennsylvania.
Sharafudeen, R. (2010). A spectroscopic method for quick evaluation of tint strength and tint tone of titania (rutile) pigment and factors affecting them. Color Research & Application, 44(1). doi: 10.1002/col.22271
Sharma, S. B., Jain, S., Khirwadkar, P., & Kulkarni, S. (2013). The effects of air pollution on the environment and human health. Indian Journal of Research in Pharmacy and Biotechnology, 1(3), 391-396.
Shimizu, Y., Lu, Y., Aono, M., & Omasa, K. (2019). A novel remote sensing-based method of ozone damage assessment effect on Net Primary Productivity of various vegetation types. Atmospheric Environment, 217, 116947. doi: 10.1016/j.atmosenv.2019.116947
Sicard, P., De Marco, A., Troussier, F., Renou, C., Vas, N., & Paoletti, E. (2013). Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 79, 705–715. doi:10.1016/j.atmosenv.2013.07.042
Tonelli, M., Pellegrini, E., D’Angiolillo, F., Petersen, M., Nali, C., Pistelli, L., & Lorenzini, G. (2015). Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. Plant Cell. Tissue and Organ Culture (PCTOC), 120(2), 617-629. doi: 10.1007/s11240-014-0628-8
van Zelm, R., Huijbregts, M. A., den Hollander, H. A., Van Jaarsveld, H. A., Sauter, F. J., Struijs, J., Harm J. van Wijnen & van de Meent, D. (2008). European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmospheric Environment, 42(3), 441-453. doi: 10.1016/j.atmosenv.2007.09.072
Published
2022-05-30
How to Cite
VELLA, Kirsty; ATTARD, Everaldo. The effects of tropospheric ozone on plant species: New perspectives. Acta Brasiliensis, [S.l.], v. 6, n. 2, p. 26-34, may 2022. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/actabra/index.php/actabra/article/view/583>. Date accessed: 22 nov. 2024. doi: https://doi.org/10.22571/2526-4338583.
Section
Environmental Chemistry