Coliforms and antibiotic-resistant bacteria in water from rivers and wells at Curitibanos, Santa Catarina
Abstract
The quality of water used for human consumption related to the absence of coliforms, which, which may cause diseases and exhibit antimicrobial resistance, a frequent issue in places with poor or non-existent environmental sanitation. The present study evaluated the concentrations of total and thermotolerant coliforms in rivers and wells in Curitibanos (SC), as well as the phenotypic resistance to four antibiotics (Ampicillin, Ampicillin+Sulbactam, Ciprofloxacin and Tetracycline), during four seasons of the year. Analysis of variance was performed and means were separated by the Scott-Knott test, at 5% error probability. In rivers, the highest values of fecal coliforms were recorded in summer and winter, and resistance to ampicillin and ampicillin+sulbactam was higher in autumn, while resistance to tetracycline was more prevalent in summer. In the wells, the highest averages of fecal coliforms occurred in summer, autumn and winter, and the highest levels of resistance were observed against ampicillin, in autumn. Overall, rivers had more compromised water quality, compared to wells, emphasizing the need to preserve aquatic resources in order to decrease evolution of resistance to antibiotics and diseases and deaths cause by superbacteria that may be ingested with contaminated water.
Downloads
References
Ana, K.M.S., Madriaga, J., & Espino, M.P. (2021). beta-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Environmental Pollution, 275(116624), 1-13. doi: 10.1016/j.envpol.2021.116624
APHA. (2012). Standard methods for the examination of water and wastewater, 22nd edition. Washington: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).
Blodgett, R. (1998). BAM Appendix 2: Most Probable Number From Serial Dilutions. In: U. S. Food & Drug Administration. Bacteriological Analytical Manual (BAM). 8. ed. [s.l.]: FDA.
Böger, B., Surek, M., Vilhena, R.O., Fachi, M.M., Junkert, A.M., Santos, J.M.M., Domingos, E.L., Cobre, A.F., Momade, D.R., & Pontarolo, R. (2021). Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. Journal of Hazardous Materials, 402(123448), 1-10. doi: 10.1016/j.jhazmat.2020.123448
Bortoloti, K.C.S., Melloni, R., Marques., P. S., Carvalho, B.M.F., & Andrade, M.C. (2018). Qualidade microbioloógica de águas naturais quanto ao perfil de resistência de bactérias heterotróficas a antimicrobianos. Engenharia Sanitária e Ambiental, 23(4), 717-725. doi: 10.1590/S1413-41522018169903
Brasil. Ministério do Desenvolvimento Urbano e Meio Ambiente. Conselho Nacional do Meio Ambiente - CONAMA. 2005. Resolução nº 357, de 17 de março de 2005. Brasília, DF, 18 de março de 2005.
Cartaxo, A.S.B., Albuquerque, M.V.C., Silva, M.C.C.P., Rodrigues, R.M.M., Ramos, R.O., Sátiro, J.R., Lopes, W.S., Leite, V.D. (2020). Contaminantes emergentes presentes em águas destinadas ao consumo humano: ocorrência, implicações e tecnologias de tratamento. Brazilian Journal of Development, 6(8), 61814-61827. doi: 10.34117/bjdv6n8-559
Chique, C., Hynds, P., Burke, L.P., Morris, D., Ryan, M. P., & O’Dwyer, J. (2021). Contamination of domestic groundwater systems by verotoxigenic Escherichia coli (VTEC), 2003-2019: A global scoping review. Water Research, 188(116496), 1-15. doi: 10.1016/j.watres.2020.116496
CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests. 13th ed. CLSI standard M02. Wayne, PA: Clinical and Laboratory Standards Institute; 2018. [ISBN 1-56238-835-5]
Colet, C., Pieper, M., Kaufmann, J.V., Schwambach, K., & Pletsch, M. (2021). Microbiological quality and sensitivity profile to antimicrobials in artesian well waters in a municipality in the northwest of Rio Grande do Sul. Engenharia Sanitária e Ambiental, 26(4), 683-690. doi: 10.1590/S1413-415220200078
CONAMA, Conselho Nacional do Meio Ambiente. Resolução CONAMA N° 357, de 17 de março de 2005.
Dafale, N.A., Srivastava, S., & Purohit., H.J. (2020) Zoonosis: An Emerging Link to Antibiotic Resistance Under “One Health Approach”. Indian Journal of Microbiology, 60(s.n.), 139-152. doi: 10.1007/s12088-020-00860-z
Diwan, V., Hanna, N., Purohit, M., Chandran, S., Riggi, E., Parashar, V., Tamhankar, A.J., Lundborg, C.S. (2018). Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. International Journal of Environmental Research and Public Health, 15(6), 1-16. doi: 10.3390/ijerph15061281
Ferreira, D.F. (2011) Sisvar: a computer statistical analysis system. Ciência e agrotecnolgia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001
França, P.T.R. & Melloni, R. (2014). Avaliação microbiológica de águas de recreação por meio da análise de resistência de bactérias heterotróficas a antibióticos. Brazilian Journal of Water Resources, 19(4), 107-113. doi: 10.21168/rbrh.v19n4.p107-113
FUNASA, Fundação Nacional da Saúde. Manual Prático de Análise de Água. 4. ed. Brasília: Fundação Nacional de Saúde, 2013. 150 p.
Helena, A.S, Perrone, P.R., Ribeiro, G.F., Cruz, S.P., Oliveira, M.H., & Krammes, J.G. (2019) Análise microbiológica da água em Curitibanos -SC e sua ligação com fatores sócio-ambientais. Revista Interdisciplinar de Estudos em Saúde da UNIARP, 9(2), 15-20. doi: 10.33362/ries.v8i2.2131
Huddleston, J.R. (2014). Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance, 2014(7), 167-176. doi: 10.2147/IDR.S48820
Invik, J., Barkema, H.W., Massolo, A., Neumann, N.F., Cey, E., & Checkley, S. (2019). Escherichia coli contamination of rural well water in Alberta, Canada is associated with soil properties, density of livestock and precipitation. Canadian Water Resources Journal, 44(3), 248-262. doi: 10.1080/07011784.2019.1595157
Laborclin. (2019) Manual de Antibiograma. Pinhais: Laborclin Produtos Para Laboratórios Ltda. 54 p.
Ma, J.Y., Li, M.Y., Qi, Z.Z., Fu, M., Sun, T.F., Elsheika, H.M., & Cong, W. (2022). Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination. Science of the Total Environment, 806(2), 1-12. doi: 10.1016/j.scitotenv.2021.150562
Ma, Y., Shen, W., Tang, T., Li, Z., & Dai, R. (2022). Environmental estrogens in surface water and their interaction with microalgae: A review. Science of the Total Environment, 807(150637), Pt. 1, 1-13. doi: 10.1016/j.scitotenv.2021.150637
Madigan, M.T., Bender, K.S., Buckley, D.H., Sattley, W. M., Stahl, D.A. (2021). Brock Biology of Microorganisms. (16th ed.). [s.l.]: Pearson Education. [ISBN 978-0-13-487440-1]
Medeiros, W.M.V., Silva, C.E., & Lins, R.P.M. (2018). Avaliação sazonal e espacial da qualidade das águas superficiais da bacia hidrográfica do rio Longá, Piauí, Brasil. Revista Ambiente e Água, 13(2), 1-17. doi: 10.4136/ambi-agua.2054
Meirelles-Pereira, F., Pereira, A.M.S., Silva, M.C.G., Gonçalves, V.D., Brum, P.R., Castro, A.R., Pereira, A.A., Esteves, F.A., Pereira, J.A.A.(2002) Ecological aspects of the antimicrobial resistence in bacteria of importance to humn infections. Brazilian Journal of Microbiology, 33(4), 287-293. doi: 10.1590/S1517-83822002000400002
Moretto, V.T., Bartley, P.S., Ferreira, V.M., Silva, L.K., Ponce-Terashima, R.A., & Blanton, R.E. (2022). Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Brazilian Journal of Biology, 82(231838), 1-9. doi: 10.1590/1519-6984.231838
O’Flaherty, E., Borrego, C.M., Balcazar J.L., & Cummins, E. (2018). Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water. Science of the Total Environment, 616-617(24404), 1356-1364. doi: 10.1016/j.scitotenv.2017.10.180
Pérez, J.I., Álvares Arroyo, R., Arrieta, J., Suescun, J.M., Paunero, S., & Gómez, M.A. (2022). Occurrence of antibiotics and antibiotic-resistant bacteria (ARB) in the Nervión river. Chemosphere, 288(1), 1-11. doi: 10.1016/j.chemosphere.2021.132479
Sahin, S., Sivri, N., Akpinar, I., Cincin Z.B., & Sonmez, V.Z. (2021). A comprehensive bibliometric overview: antibiotic resistance and Escherichia coli in natural water. Environmental Science and Pollution Research, 28(25), 32256-32263. doi: 10.1007/s11356-021-14084-1
Skandalis, N., Maeusli, M., Papafotis, D., Miller, S., Lee, B.S., Theologidis, I., & Luna, B. (2021). Environmental Spread of Antibiotics Resistance. Antibiotics-Basel, 10(6), 1-14. doi: 10.3390/antibiotics10060640
Urseler, N.L., Bachetti, R.A., Damilano, G., Morgante, V., Ingaramo, R. N., Saino, V. & Morgante, C.A. (2019). Calidad microbiológica y usos del agua subterránea en establecimientos agropecuarios del centro-sur de Córdoba, Argentina. Revista Internacional de Contaminación Ambiental, 35(4), 839-848. doi: 10.20937/RICA.2019.35.04.06
United Nations. (2020). Mais de 4,2 bilhões de pessoas vivem sem acesso a saneamento básico. Available in: https://news.un.org/pt/story/2020/11/1733352
Valenzuela, E., Almonacid, R.G.L., & Barrientos, M. (2012). Calidad microbiológica del agua de un área agrícola-ganadera del centro sur de Chile y su posible implicancia en la salud humana. Revista Chilena de Infectología, 29(6), 628-634. doi: 10.4067/S0716-10182012000700007
Wilkinson, J., & Boxall, A. (2019) The first global study of pharmaceutical contamination in riverine environments. SETAC Europe 29th Annual Meeting, Helsinki, Finland.
World Health Organization. (2017). WHO guidelines on use of medically important antimicrobials in food-producing animals. Geneva, World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO. [ISBN 978-92-4-155013-0]
World Health Organization. (2019). Safer Water, Better Health. Geneva, World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. [ISBN 978-92-4-151689-1]