Identification of cyanobacteria in Lagoa Salgada by metagenomic approach, Rio de Janeiro, Brazil
Abstract
Lagoa Salgada is a coastal hypersaline water body located in the north of Rio de Janeiro State and recognized by the presence of stromatolites. Cyanobacteria are the main primary producers of these structures in coastal hypersaline lagoons. The aim of the study was to identify the cyanobacteria present in Lagoa Salgada through metagenomics. The genetic material obtained from a water sample collected in June 2019 was submitted to sequencing by the shotgun method. The metagenomic data were analyzed using the MetaWrap version 1.3 pipeline to identify cyanobacteria and biological processes. The genus Synechococcus showed greater abundance, corresponding to 64.3% of the identified cyanobacteria, followed by Synechocystis (23.6%), Geminocystis (2%), and Calothrix (1.8%). The most abundant species were Synechococcus sp. RS9909 (46.7%), Synechocystis sp. PCC 6714 (16.4%), Synechococcus sp. WH 8101 (9.2%), Synechocystis sp. CACIAM 05 (4.3%). Thirty-three biological processes associated with genes present in the sample were identified. The Lagoa Salgada has a wide diversity of cyanobacteria in its aquatic ecosystem that is still little explored, justifying the need for protection and preservation of this lagoon environment.
Downloads
References
Cataudella S., Crosetti D., & Massa F. (2015). Mediterranean coastal lagoons: sustainable management and interactions among aquaculture, capture fisheries and the environment. Studies and Reviews. General Fisheries Commission for the Mediterranean. (nº 95, 278 pp). Rome. Food and Agriculture Organization (FAO).
Clementino, M. M., Vieira, R. P., Cardoso, A. M., Nascimento, A. P. A., Silveira, C. B., Riva, T. C., Gonzalez, A. S. M., Paranhos, R., Albano, R. M., Ventosa, A., & Martins, O. B. (2008). Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles, 12(4), 595–604. doi: 10.1007/s00792-008-0162-x
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., &Visscher, P. T. (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Reviews, 96, 141-162. doi: https://doi.org/10.1016/j.earscirev.2008.10.005
Fourçans, A., Oteyza, T. G., Wieland, A., Solé, A., Diestra, E., Bleijswijk, J., Grimalt, J. O., Kühl, M., Esteve, I., Muyzer, G., Caumette, P., & Duran, R. (2004). Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiology Ecology, 51(1), 55–70. doi: 10.1016/j.femsec.2004.07
Glunk, C., Dupraz, C., Braissant, O., Gallagher, K. L., Verrecchia, E. P., & Visscher, P. T. (2010). Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology, 58(3), 720–736. doi: 10.11/j.1365-30.2010.0180.x
Lapidus, A. L., & Korobeynikov, A. I. (2021). Metagenomic Data Assembly – The Way of Decoding Unknown Microorganisms. Frontiers in Microbiology, (12) 653. doi: https://doi.org/10.3389/fmicb.2021.613791
Oren, A. (2015). Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodiversity and Conservation, 24(4), 781-798. doi: https://doi.org/10.1007/s10531-015-0882-z
Pérez-Ruzafa, A., Marcos, C., & Pérez-Ruzafa, I. M. (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Physics and Chemistry of the Earth, Parts A/B/C, 36(5-6), 160-166. doi: 10.1016/j.pce.2010.04.013
Ramos, V. M. C., Castelo-Branco, R., Leão, P. N., Martins, J., Carvalhal-Gomes, S., Sobrinho da Silva, F., Filho, J. G. M., & Vasconcelos, V. M. (2017). Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study. Frontiers in Microbiology, 8. doi: https://doi.org/10.3389/fmicb.2017.01233
Ramos, V. R., Araújo, T. M. R., & Oliveira, M. M. (2019). Histórico e caracterização das lagoas do Açu, Salgada, Grussaí e Iquipari, São João da Barra/RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 13(1), 3-23, 27. doi: https://doi.org/10.19180/2177-4560.v13n12019p3-23
Silva, D. R., Mansur, K. L., & Borghi, L. (2018). Evaluation of the scientific value of Lagoa Salgada (Rio de Janeiro, Brazil): characterization as geological heritage, threats and strategies for geoconservation. Journal of the Geological Survey of Brazil, 1(2), 69-80. doi: https://doi.org/10.29396/jgsb.2018.v1.n2.2
Silva e Silva, L. H., Alves, S. A. P. M. N., Magina, F. C., & Gomes, S. B. V. C. (2013). Composição cianobacteriana e química dos estromatólitos da lagoa Salgada, Neógeno do estado do Rio de Janeiro, Brasil. Geologia USP. Série Científica, 13(1), 95–106. doi: https://doi.org/10.5327/Z1519-874X2013000100006
Sohm, J. A., Ahlgren, N. A., Thomson, Z. J., Williams, C., Moffett, J. W., Saito, M. A., Webb, E. A.,& Rocap, G. (2015). Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. The ISME Journal, 10(2), 333-345. doi: https://doi.org/10.1038/ismej.2015.115
Srivastava,N. K. (2002). Lagoa Salgada (Rio de Janeiro) - Estromatólitos recentes. In: Schobbenhaus, C.; Campos, D. A.; Queiroz, E. T.; Winge, M.; Berbert-Born, M. (Orgs.), Sítios Geológicos e Paleontológicos do Brasil. (1. ed., v. 01: 203-209) Brasília: Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP). Link: sigep.cprm.gov.br/sitio41
Stal L.J. (2012) Cyanobacterial Mats and Stromatolites. In: Whitton B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. doi: https://doi.org/10.1007/978-94-007-3855-3_4
Uritskiy, G. V., DiRuggiero, J., & Taylor, J. (2018). MetaWRAP – a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6(1). doi: https://doi.org/10.1186/s40168-018-0541-1
Ventosa, A., Haba, R. R., Cristina Sánchez-Porro, C., & Papke, T. R. (2015). Microbial diversity of hypersaline environments: a metagenomic approach. Current Opinion in Microbiology, (25), 80-87. doi: https://doi.org/10.1016/j.mib.2015.05.002