Evaluation of the activity of aromatic aldehydes and their oximes against human erythrocyte acetylcholinesterase enzyme

Abstract

Considering the therapeutic importance of the acetylcholinesterase inhibitor drugs, as well, enzyme regenerators drugs, in cases of organophosphate poisoning. The activity of aromatic aldehydes and their oximes was evaluated against human erythrocyte acetylcholinesterase. Oximes were prepared from the oximation of benzaldehyde, 4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde and 4-dimethylminobenzaldehyde, and then the Ellman assay was used to evaluate the behavior of these compounds against active acetylcholinesterase and the enzyme inhibited by dichlorvos. The evaluated aldehydes showed acetylcholinesterase inhibitory activity in the percentage of 21.33%, 53.00%, 44.00% and 62.67%, respectively, for benzaldehyde, 4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde and 4- dimethylminobenzaldehyde. Among the oximes evaluated, only dimethylaminobenzaldoxime showed inhibitory activity (36.67%). Benzaldoxime, 4-hydroxybenzaldoxime and 4-hydroxy-3-methoxybenzaldoxime could modestly regenerate the enzymatic activity in 9.21%, 32.83% and 8.90%, respectively, when the enzyme was inhibited by dichlorvos. The aromatic aldehydes tested showed a potential inhibitory activity of erythrocyte acetylcholinesterase at the concentration of 100 mM, the highest potential being demonstrated by 4-dimethylamibenzaldehyde, with 62.67% inhibition. The oximes, except for dimethylaminobenzaldoxime, behaved as weak regenerators of the enzyme inhibited by dichlorvos, showing the relevance of the oxime group for the regeneration of the enzyme inhibited by organophosphates.

Downloads

Download data is not yet available.

References

Araújo, C. R. M.; Gonsalves, A. A. 2015. Oximas: propriedades químicas, métodos de preparação e aplicações na síntese de grupos funcionais nitrogenados. Revista Virtual de Química, 7(4):1469-1495.
Araújo, C. R. M.; Santos, V. L. dos A.; Gonsalves A. A. 2016. Acetilcolinesterase - AChE: Uma Enzima de Interesse Farmacológico. Revista Virtual de Química, 8(6): 1818-1834.
Bodil, J.; Sine, L. 1991. Hydrogen bonding and stereochemistry of ring-hydroxylated aromatic aldehyde oximes. Crystal structures of three 4-hydroxy-substituted benzaldehyde oxime. Acta Chemica Scandinavica, 45: 285-291.
Brady, O. L.; Dunn, F. P. 1914. LXXXIV. The isomerism of the oximes. Part III. The hydroxybenzaldoximes. Journal of Chemical Society, PerkinTransaction, 105:821-830.
Chambers, J. E.; Chambers, H. W.; Funck, K. E.; Meek, E. C.; Pringle, R. B.; Ross, M. K. 2016. Efficacy of novel phenoxyalkyl pyridinium oximes as brainpenetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chemico-Biological Interactions, 259(2016):154-159.
Colovic, M. B.; Krstić, D. Z.; Lazarević-Pašti, T. D.; Bondžić, A. M.; Vasić, V. M. 2013 Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current. Neuropharmacology, 11(3): 315-335.
Costa, M. D.; Freitas, M. L.; Soares, F. A. A.; Santana Carratu, V. S.; Brandão, R. 2011. Potential of two new oximes in reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by organophosphate compounds: An in vitro study. Toxicology in vitro, 25 (2011): 2120–2123.
Field, L.; Hughmark, P. B.; Shumaker, S. H. W.; Marshall, S. 1961. Isomerization of Aldoximes to Amides under Substantially Neutral Conditions. Journal of the American Chemical Society, 83(8): 1983-1987.
Freitas, H. F.; Paz, O. S.; Castilho, M. S. 2009. Estudos de QSAR 3D para um conjunto de inibidores de butirilcolinesterase humana. Química Nova, 32(8): 2114-2121.
Iménez-Díaz, M.; Martinez-Monge, V. 2000. Validación de la determinación de colinesterasa plasmática humana a 340 nM. Revista Biomédica, 11(2):91-98.
Jokanovic, M.; Prostan, M. 2009. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Current Medicinal Chemistry, 16(17): 2177-2188.
Kassa, J.; Sepsova, V.; Horova, A.; Musilek, K. 2015. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K920, K923) with the oxime K203 and trimedoxime in tabun-poisoned rats and mice. Journal of applied biomedicine, 13 (2015): 299–304.
Korabecnya, J.; Soukupb, O.; Dolezalb, R.; Spilovskaa, K.; Nepovimovaa, E.; Andrsa, M.; Nguyenc, T. D.; Juna, D.; Musileka, K.; Kucerova-Chlupacovac, M.; Kucab, K. 2014. From Pyridinium-based to Centrally Active Acetylcholinesterase Reactivators. Mini-Reviews in Medicinal Chemistry, 14: 215-221.
Kucaa, K.; Juna, D.; Musilekb, K. 2006. Structural Requirements of Acetylcholinesterase Reactivators. Mini-Reviews in Medicinal Chemistry, 6: 269-277.
Li, J-C.; Zhang, J.; Rodrigues, M. C.; Ding, D-J.; Longo, J. P. F.; Azevedo, R. B.; Muehlmann, L. A.; Jiang, C-S. 2016. Synthesis and evaluation of novel 1,2,3-triazole-based, acetylcholinesterase inhibitors with neuroprotective activity. Bioorganic & Medicinal Chemistry Letters, 26 (2016): 3881–3885.
Linhares, A. G. 2014. Efeito de pesticidas organofosforados e carbamatos sobre a acetilcolinesterase eritrocitária humana e seu potencial uso como biomarcardor da exposição ocupacional, Pernambuco, Brasil. Dissertação de Mestrado, Pós-Graduação em Ciências Biológicas - Universidade Federal de Pernambuco, Recife, Pernambuco. 81 p.
Massoud, F.; Desmarais, J. E.; Gauthier, S. 2011. Switching cholinesterase inhibitors in older adults whit dementia. International Psychogeriatrics, 23(3):372-378.
Mehta, M.; Adem, A.; Sabbagh, M. 2012. New Acetylcholinesterase Inhibitors for Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2012: 1-8.
Oliveira-Silva, J. J.; Alves, S. R, Inacio, A. F.; Meyer, A.; Sarcinelli, P. N.; Mattos, R. C.; Ferreira, M. F.; Cunha, J. C.; Moreira, J. C. 2000. Cholinesterase activities determination in frozen blood samples: an improvement to the occupational monitoring in developing countries. Human & Experimental Toxicology, 19(3):173-177.
Rapport, D. J.; Gaudet, C. L.; Calow, P. 2013. Evaluating and Monitoring the Health of Large-Scale Ecosystems. Ed. Springer Science & Business Media, Canada, 454p.
Razzino, C. A. 2007. Desenvolvimento, caracterização e utilização de um nanobiossensor enzimático para a determinação de carbaril, São Paulo, Brasil. Dissertação de Mestrado/Universidade de São Paulo. Instituto de Química de São Carlos, São Carlos, São Paulo. 79p.
Rename - Relação Nacional de Medicamentos Essenciais, 2017. Disponível em: . Acesso em 10 Jul. 2017.
Sotiropouloua, S.; Fournierb, D.; Chaniotakisa, N. A. 2005. Genetically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Biosensors and Bioelectronic, 20(11): 2347-2352.
Worek, F.; Reiter G.; Eyer, P, Szinicz. L. 2005. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Archives of Toxicology, 76(9):523-529.
Worek, F.; Wille, T.; Koller, M.; Thiermann, H. 2012. Reactivation kinetics of a series of related bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase structure–activity relationships. Biochemical Pharmacology 83 (2012): 1700–1706.
Published
2017-09-26
How to Cite
BASTOS, Maíra Dias Mangueira et al. Evaluation of the activity of aromatic aldehydes and their oximes against human erythrocyte acetylcholinesterase enzyme. Acta Brasiliensis, [S.l.], v. 1, n. 3, p. 22-27, sep. 2017. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/actabra/index.php/actabra/article/view/49>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.22571/Actabra13201749.