Invertebrates and microbiota associated with aquatic macrophyte degradation in a shallow lake in southern Brazil

  • Edelti Faria Albertoni Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
  • Andréa Luiza de Mattos de Moraes Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
  • Pablo Santos Guimarães Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
  • Cleber Palma-Silva Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil


Aquatic macrophytes are the main producers of organic matter in shallow aquatic ecosystems. They are also food sources for many herbivores. When macrophytes die, they enter the debris chain, are conditioned by microbial action and colonized by benthic invertebrates which remobilize nutrients from their biomass. In subtropical aquatic systems, the participation of shredder invertebrates has been questioned, highlighting the participation of fungi and bacteria in the degradation of organic matter. This study evaluated the degradation of two submerged aquatic macrophytes, Mayaca fluviatilis and Stuckenia pectinata, determining the quality of debris and microbiota and invertebrate trophic group density throughout the degradation process. Our results indicated that plants with lower polyphenol concentrations had higher degradation speeds. The shredders invertebrates had reduced abundance in both macrophytes, emphasizing the importance of bacteria and fungi in the nutrient cycling process in subtropical shallow lakes.


Download data is not yet available.


Albertoni, E. F., Palma-Silva, C., Trindade, C. R. T., & Furlanetto, L. M. (2014). Field evidence of the influence of aquatic macrophytes on water quality in a shallow eutrophic lake over a 13-year period. Acta Limnologica Brasiliensia, 26(2), 176-185. doi: 10.1590/S2179-975X2014000200008

Albertoni, E. F., Hepp, L. U., Carvalho, C. & Palma-Silva, C. (2018). Invertebrate composition in submerged macrophyte debris: habitat and degradation time effects. Ecologia Austral 28, 93-103. Recovered from

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., Sparovek, G. (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6), 711–728. doi: 10.1127/0941-2948/2013/0507

Andersen, R., Grasset, L., Thormann, M.N., Rochefort, L., & Francez, A. J. (2010). Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biological and Biochemical, 42, 291–301. doi: 10.1016/j.soilbio.2009.11.006

Capello, S., Marchese, M., & Ezcurra de Drago, I. (2004). Descomposición y colonización por invertebrados de hojas de Salix humboldtiana em la llanura aluvial del Río Paraná Medio. Amazoniana, 18, 125-143.

Carvalho, C., Hepp, L. U., Palma-Silva, C., & Albertoni, E. F. (2015). Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53, 1–9. doi: 10.1016/j.limno.2015.04.003

Carvalho, E. M., & Uieda, V. S. (2009). Diet of invertebrates sampled in leaf-bags incubated in a tropical headwater stream. Zoologia, 26(4), 694-704. doi: 10.1590/S1984-46702009000400014

Cummins, K. W., Petersen, R. C., Howard, F. O., Wuycheck, J. C., & Holt, V. I. (1973). The utilization of leaf litter by stream detritivores. Ecology 54(2), 336-345. doi:10.2307/1934341

Domínguez, E., & Fernández H. R. (ed.). (2009). Guía para la determinación de los artrópodos bentónicos sudamericanos. 2ª Ed. Tucumán: Editorial Universitaria de Tucumán. pp. 654.

Esteves, F. D. A., & Gonçalves Jr, J. F. (2011). Etapas do metabolismo aquático. Fundamentos de limnologia. (3ª Ed., Cap. 7, 119-124), Interciência, Rio de Janeiro.

Fogelman, K.J., Bilger, M. D., Holt, J.R., & Matlaga, D. P. (2018). Decomposition and benthic macroinvertebrate communities of exotic Japanese knotweed (Fallopia japonica) and American sycamore (Platanus occidentalus) detritus within the Susquehanna River. Journal of Freshwater Ecology, 33(1), 299-310. doi: 10.1080/02705060.2018.1458660

Gaur, S., Singhal, P. K., & S. K. Hasija (1992) Relative contributions of bacteria and fungi to water hyacinth decomposition. Aquatic Botany, 43, 1-15. doi: 10.1016/0304-3770(92)90010-g

Gessner M. O. & Chauvet, E. (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75, 1897–1817

Gonçalves Jr, J. F., Graça, M. A. S., & Callisto, M. (2006). Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of North American Benthological Society,25(2), 344–355. doi: 10.1899/0887-3593

Gonçalves Jr, J. F., Graça, M. A. S., & Callisto, M. (2007). Litter decomposition in a cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology, 52, 1440-1451. doi: 10.1111/j.1365-2427.2007.01769.x

Gonçalves Jr., J. F., Martins, R. T., Ottoni, B. M. P., & Couceiro, S. R. M. (2014). Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In: Hamada, N.,
Nessimian, J. L., Querino, R. B. (Eds) Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. (Cap. 6, pg 89-116) Manaus: Editora do INPA.

Graça, M. A., Bärlocher, F., & Gessner, M. O. (Eds.). (2005). Methods to study litter decomposition: a practical guide. Springer Science & Business Media.

Hammer, Ø., Harper, D.A.T., & Ryan, P.D. (2001). PAST: Paleontological
Statistics Software Package for Education and Data Analysis.
Palaeontology Electronic, 4, 1-9.

Hickenbick, G. R., Ferro, A. L., & Abreu, P. C. O. V. (2004). Produção de detrito de macrófitas emergentes em uma marisma do estuário da lagoa dos Patos: taxas de decomposição e dinâmica microbiana. Atlântica, 26, (1), 61-75. Recovered from

Irons, J. G., Oswood, M. W., Stout, R. J. & Pringle, C. M. (1994). Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biology, 32, 401-411. doi: 10.1111/j.1365-2427.1994.tb01135.x

Ligeiro, R., Moretti, M. S., Gonçalves, J. F., Callisto, M. (2010) What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia, 654(1), 125-136.

Lodge, D.M. (1991). Herbivory on freshwater macrophytes. Aquatic Botany, 41, 195-224. doi: 10.1016/0304-3770(91)90044-6

Magurran, A. 2004. Measuring Biological Diversity. Oxford, Blackwell Publishing. pp. 256

Merritt, R. W., Cummins, K. W. & Berg, M. B. (2008). An Introduction to the Aquatic Insects of North America. Dubuque, Kendall/Hunt Publishing Co. pp. 1158.

Mille-Lindblom C., & Tranvik L. J. (2003). Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbial Ecology 45, 173-182. doi:10.1007/s00248-002-2030-z

Monteiro, J.M., Allbuquerque, U.P., Araújo, E.L. (2005) Taninos: uma abordagem da química à ecologia. Química Nova, 28, 892-896.

Overbeek, C. C., van der Geest, H. G., van Loon, E. E., Klink, A. D., van Heeringen, S. F., Harpenslager, S. F., & Admiraal, W. (2018). Decomposition of aquatic pioneer vegetation in newly constructed wetlands. Ecological Engineering, 114, 154–161. doi: 10.1016/j.ecoleng.2017.06.046

Rezende R. S., Medeiros A. O., Gonçalves J. F. Jr, Feio M. J., Pereira Gusmão E., de Andrade Gomes V. A., Calor A., & Almeida J. (2019) Patterns of litter inputs, hyphomycetes and invertebrates in a Brazilian savanna stream: a process of degradative succession. Journal of Tropical Ecology 35, 297–307. doi: 10.1017/S0266467419000269

Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. (2012) Standard Methods for Examination of Water and Wastewater, 22nd ed. Washington, DC, American Public Health Association, American Water Works Association and Water Environment Federation

Rolon, A. & Maltchick, L. (2006). Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia, 556, 221-231. doi:10.1007/s10750-005-1364-1

Romaní, A. M., Fischer, H., Mille-Lindblom, C., & Tranvik, L. J. (2006) Interactions of Bacteria and Fungi on Decomposing Litter: Differential Extracellular Enzyme Activities. Ecology, 87(10), 2559-2569. Recovered from

Santschi, F., Gounand, I.Harvey, E., & Altermatt, F. (2018). Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems. Functional Ecology 32,522–532. doi: 10.1111/1365-2435.12980

Shilla, D., Asaeda, T., Fujino, T., & Sanderson, B. (2006). Decomposition of dominantsubmerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia. Wetland Ecology and Management 5(14), 427–433. doi: 10.1007/s11273-006-6294-9

Silva, F. L., Oliveira, H. R. N., Escarpinati, S., C.; Fonseca-Gessner, A. A. & Paula, M. C. (2011). Colonization of leaf litter of two aquatic macrophytes, Mayaca fluviatilis, Aublet and Salvinia auriculata, Aublet by aquatic macroinvertebrates in a tropical reservoir. Ambi-Agua, 6 (1), 30-39. doi:10.4136/ambi-agua.171

Silva, J. S., Silveira, W. T., Albertoni, E. F., & Palma-Silva, C. (2010). Diversity of Chironomidae (Diptera) in decomposing Nymphoides indica (L.) Kuntze in two subtropical lakes with different trophic conditions. Pan-American Journal of Aquatic Sciences, 5(4), 557-571. Recovered from

Song, N., Yan, Z. S., Cai, H. Y., & Jiang, H. L. (2013). Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia, 714, 131– 144. doi: 10.1007/s10750-013-1529-2

Suberkroop, K. & Klug, M. J. (1976). Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology, 57, 707-719. doi: 10.2307/1936184

Palma-Silva, C., Marinho, C.C., Albertoni, E.F., Giacomini, I.B., Figueiredo-Barros, M.P., Furlanetto, L.M., Trindade, C.R.T., & Esteves, F.A. (2013). Methane emissions in two small shallow neotropical lakes: the role of temperature and trophic level. Atmospheric Environment, 81, 373-379 doi: 10.1016/j.atmosenv.2013.09.029

Telöken, F., Albertoni, E.F., Palma-Silva, C. (2011). Leaf degradation of Salix hum-boldtiana Willd, (Salicaceae) and invertebrate colonization in a subtropical lake (Brazil). Acta Limnologica Brasiliensia, 23(1), 30-41. doi:10.4322/actalb.2011.016

Telöken, F., Albertoni, E.F., Hepp, L. U. & Palma-Silva, C. (2014). Invertebrados aquáticos associados a serapilheira de Salix humboldtiana em um riacho subtropical. Ecología Austral 24, 220-228. Recovered from

Tomanova, S., Goitia, E., & Heles, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251-264. doi:10.1007/s10750-005-1255-5

Webster, J.R., & Benfield, E.F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17, 567–594. doi:10.1146/
How to Cite
ALBERTONI, Edelti Faria et al. Invertebrates and microbiota associated with aquatic macrophyte degradation in a shallow lake in southern Brazil. Acta Brasiliensis, [S.l.], v. 4, n. 1, p. 38-44, jan. 2020. ISSN 2526-4338. Available at: <>. Date accessed: 03 dec. 2021. doi: