O status ecológico das comunidades de fungos coprófilos

Autores

  • Francisco J. Simões Calaça Universidade de Brasília – campus Darcy Ribeiro Universidade Estadual de Goiás – campus de Ciências Exatas e Tecnológicas
  • Jéssica Conceição Araújo Universidade Estadual de Goiás – campus de Ciências Exatas e Tecnológicas
  • Solange Xavier Santos Universidade Estadual de Goiás – campus de Ciências Exatas e Tecnológicas

DOI:

https://doi.org/10.29215/pecen.v1i2.452

Resumo

Buscamos discutir o status ecológico das comunidades de fungos coprófilos lato sensu, apresentando pontos chave para a formulação de hipóteses e futuros estudos que visem entender os fatores ecológicos que modulam a escolha da vida coprófila por estes fungos. Apresentamos um novo termo (copromicodiversidade), que melhor designa a amplitude do grupo, considerando a total abrangência do mesmo, incluindo a diversidade morfológica, funcional e ecológica de uma dada população de fungos coprófilos registrados em uma região geográfica específica. Além disso, levantamos questões relacionadas ao ciclo de vida destes organismos, considerando recentes estudos bem como a premissa tradicionalmente aceita que defende a necessidade dos esporos de fungos coprófilos passarem pelo trato digestivo dos animais, para sua posterior emergência nas fezes. Esperamos que futuras pesquisas possam melhor definir estas comunidades, evitando incertezas sobre a definição do estilo de vida coprófilo, mesmo que algumas espécies possam crescer em outros substratos (fimícolas), mas ainda apresentando relações com hospedeiros animais (coprofilia). Enquanto esperamos por direções futuras, novas hipóteses devem ser planejadas e testadas visando os aspectos que verdadeiramente modulam a ocorrência de fungos coprófilos em diferentes ambientes.

Palavras chave: Copromicodiversidade, ecologia fúngica, escolha de substratos, fungos de esterco.

The ecological status of coprophilous fungi communities

Abstract: We discuss the ecological status of coprophilous fungi communities lato sensu, presenting key points to the definition of scientific hypothesis and future studies aiming to understand the ecological factors that modulate the coprophilous lifestyle’s choice by these fungi. We present a new scientific term (copromycodiversity) that better describes the magnitude of this group, considering the comprehensiveness of this fungal group, including the morphological, physiological and ecological diversities to a coprophilous fungi population recorded to a specific geographical region. Furthermore, we raised some questions related to the life cycle of these fungi, taking into account recent studies as well as the traditionally accepted assumption that supports the spore passage through animals’s gut to its growth and development on dung. We expect that future research would best define these communities, avoiding uncertainties about the definition of the coprophilous lifestyle, even that some species would growth on others substrates (fimicolous fungi), but still displaying some connection with its animal host (coprophilia). While we are waiting for future directions, new hypothesis must be planned and tested aiming the predictors that truly modulates the occurrence of coprophilous fungi in different environments.

Key words: Copromycodiversity, dung fungi, fungal ecology, substrate choice.

Referências

Abdel-Azeem A.M. & Salem F.M. (2015) Fungi fimicola Aegyptiaci: I. Recent investigations and conservation in arid South Sinai. Mycosphere, 6(2): 174–194. doi: 10.5943/mycosphere/6/2/8

Basumatary S.K. & McDonald H.G. (2017) Coprophilous fungi from dung of the Greater One-Horned Rhino in Kaziranga National Park, India and its implication to paleoherbivory and paleoecology. Quaternary Research, 88: 14–22. doi: 10.1017/qua.2017.34

Bell A. (1983) Dung Fungi: an illustrated guide to coprophilous fungi in New Zealand. New Zealand: Victoria University Press. 88 p.

Bell A. (2005) An illustrated guide to the coprophilous Ascomycetes of Australia. CBS Biodiversity Series 3. Utrecht: Centraalbureau voor Schimmelcultures. 172 p.

Cain R.F. (1961) Studies of coprophilous ascomycetes. VII. Preussia. Canadian Journal of Botany, 39: 1633–1666. doi: 10.1139/b61-144

Calaça F.J.S. & Xavier-Santos S. (2012) Fezes de Herbívoros: um microcosmo inexplorado da diversidade fúngica. Heringeriana, 6(1): 52–55.

Calaça F.J.S. & Xavier-Santos S. (2016) New records of coprophilous ascomycetes (Fungi: Ascomycota) from Brazil and Neotropical Region. Check List, 12(6): 2009, 1–9. http://dx.doi.org/10.15560/12.6.2009

Calaça F.J.S., Silva N.C. & Xavier-Santos S. (2014) A checklist of coprophilous fungi and other fungi recorded on dung from Brazil. Mycotaxon, 128: 205. 1–22. doi: http://dx.doi.org/10.5248/128.205

Cavalier-Smith T., Fiore-Donno A.M., Chao E., Kudryavtsev A., Berney C., Snell E.A. & Lewis R. (2015) Multigene phylogeny resolves deep branching of Amoebozoa. Molecular Phylogenetics and Evolution, 83: 293–304. doi: 10.1016/j.ympev.2014.08.011

Davis O.K. (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene Megafaunal Extinction. Quaternary Research, 28: 290–294. https://doi.org/10.1016/0033-5894(87)90067-6

Doveri F. (2004) Fungi Fimicoli Italici. Trento, A.M.B: Fondazione Studi Micologici. 1104 p.

Doveri F. (2017) Additional reports on coprophilous Lasiosphaeriaceae from tropical climates. Ascomycete.org, 9(2): 32–58.

Dugan F.M., Roberts R.G. & Hanlin R.T. (1995) New and rare fungi from cherry fruits. Mycologia, 87: 713–718. http://dx.doi.org/10.2307/3760817

Eliasson U.H. (2012) Coprophilous Myxomycetes: Recent advances and future research directions. Fungal Diversity, 59(1): 85–90. http://dx.doi.org/10.1007/s13225-012-0185-6

Eliasson U.H. & Keller H.W. (1999) Coprophilous myxomycetes: updated summary, key to species, and taxonomic observations on Trichia brunnea, Arcyria elaterensis, and Arcyria stipata. Karstenia, 39: 1–10.

Eliasson U.H., Keller H.W. & Schoknecht J.D. (1991) Kelleromyxa, a new generic name for Licea fimicola (Myxomycetes). Mycological Research, 95: 1201–1207. doi: 10.1016/S0953-7562(09)80011-7

Gonzalez-Menendez V., Martin J., Siles J.A., Gonzales-Tejero M.R., Reyes F., Platas G., Tormo J.R. & Genilloud O. (2017) Biodiversity and chemotaxonomy of Preussia isolates from the Iberian Peninsula. Mycological Progress, 16: 713–728. http://dx.doi.org/10.1007/s11557-017-1305-1

Guarro J., Abdullah S.K., Gene J. & Al-Saadoon A.H. (1997) A new species of Preussia from submerged plant debris. Mycological Research, 101: 305–308. http://dx.doi.org/10.1017/S0953756296002638

Hibbett D.S., Binder M., Bischoff J.F., Blackwell M., Cannon P.F., Eriksson O.E., Huhndorf S., James T., Kirk P.M., Lücking R., Thorsten-Lumbsch H., Lutzoni F., Matheny P.B., McLaughlin D.J., Powell M.J., Redhead S., Schoch C.L., Spatafora J.W., Stalpers J.A., Vilgalys R., Aime M.C., Aptroot A., Bauer R., Begerow D., Benny G.L., Castlebury L.A., Crous P.W., Dai Y.C., Gams W., Geiser D.M., Griffith G.W., Gueidan C., Hawksworth D.L., Hestmark G., Hosaka K., Humber R.A., Hyde K.D., Ironside J.E., Kõljalg U., Kurtzman C.P., Larsson K.H., Lichtwardt R., Longcore J., Miadlikowska J., Miller A., Moncalvo J.M., Mozley-Standridge S., Oberwinkler F., Parmasto E., Reeb V., Rogers J.D., Roux C., Ryvarden L., Sampaio J.P., Schüssler A., Sugiyama J., Thorn R.G., Tibell L., Untereiner W.A., Walker C., Wang Z., Weir A., Weiss M., White M.M., Winka K., Yao Y.J. & Zhang N. (2007) A higher-level phylogenetic classification of the Fungi. Mycological Research, 111: 509–547. doi: 10.1016/j.mycres.2007.03.004

Katinas L., Gutiérrez D.G. & Robles S.S.T. (2000) Carlos Spegazzini (1858-1926): Travels and botanical work on vascular plants. Annals of the Missouri Botanical Garden, 87: 183–202.

Kruys Å. & Wedin M. (2009) Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, ascomycota), utilising multi-gene phylogenies. Systematics and Biodiversity, 7: 465–478. doi: 10.1017/S1477200009990119

Lundqvist N. (1972) Nordic Sordariaceae s. lat. Symbolae Botanicae Upsalienses, 20(1): 1–314.

Maia L.C., Carvalho-Júnior A.A., Cavalcanti L.H., Gugliotta A.M., Drechsler-Santos E.R., Santiago A.L.C.M.A., Cáceres M.E.S., Gibertoni T.B., Aptroot A., Giachini A.J., Soares A.M.S., Silva A.C.G., Magnago A.C., Goto B.T., Lira C.R.S., Montoya C.A.S., Pires-Zottarelli C.L.A., Silva D.K.A., Soares D.J., Rezende D.H.C., Luz E.D.M.N., Gumboski E.L., Wartchow F., Karstedt F., Freire F.M., Coutinho F.P., Melo G.S.N., Sotão H.M.P., Baseia I.G., Pereira J., Oliveira J.J.S., Souza J.F., Bezerra J.L., Araujo-Neta L.S., Pfenning L.H., Gusmão L.F.P., Neves M.A., Capelari M., Jaeger M.C.W., Pulgarín M.P., Menolli-Junior N., Medeiros P.S., Friedrich R.C.S., Chikowski R.S., Pires R.M., Melo R.F., Silveira R.M.B., Urrea-Valencia S., Cortez V.G. & Silva V.F. (2015) Diversity of Brazilian Fungi. Rodriguésia, 66: 1033–1045. http://dx.doi.org/10.1590/2175-7860201566407

Mapperson R.R., Kotiw M., Davis T.A. & Dearnaley J.D.W. (2014) The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Current Microbiology, 68: 30–37. http://dx.doi.org/10.1007/s00284-013-0415-5

Newcombe G., Campbell J., Griffith D., Baynes M., Launchbaugh K. & Pendleton R. (2016) Revisiting the life cycle of dung fungi, including Sordaria fimicola. PLoS ONE, 11(2): e0147425. doi: 10.1371/journal.pone.0147425

Novozhilov Y.K. & Schnittler M. (2000) A new coprophilous species of Perichaena (Myxomycetes) from the Russian Arctic (the Taimyr Peninsula and the Chukchi Peninsula). Karstenia, 40(1–2): 117–122.

Raven P.H., Evert R.F. & Eichhorn S.E. (2007) Biology of Plants. 7° edition. Arcata: W.H. Freeman & Co. 944 p.

Reichenbach H. (1999) The ecology of the myxobacteria. Environmental Microbiology, 1(1): 15–21. http://dx.doi.org/10.1046/j.1462-2920.1999.00016.x

Richardson M.J. (2001a) Diversity and occurrence of coprophilous fungi. Mycological Research, 105: 387–402. http://dx.doi.org/10.1017/S0953756201003884

Richardson M.J. (2001b) Coprophilous fungi from Brazil. Brazilian Archives of Biology and Technology, 44(3): 283–289. http://dx.doi.org/10.1590/S1516-89132001000300010

Richardson M.J. (2015) Records of coprophilous fungi – a data set. Mycotaxon, 130: 925, 1–5. http://dx.doi.org/10.5248130.925

Spatafora J.W., Chang Y., Benny G.L., Lazarus K., Smith M.E., Berbee M.L., Bonito G., Corradi N., Grigoriev I., Gryganskyi A., James T.Y., O’Donnell K., Roberson R.W., Taylor T.N., Uehling J., Vilgalys R., White M.M. & Stajich J.E. (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108: 1028–1046. http://dx.doi.org/10.3852/16-042

van Asperen E.N. (2017) Fungal diversity on dung of tropical animals in temperate environments: Implications for reconstructing past megafaunal populations. Fungal Ecology, 28: 25–32. doi: 10.1016/j.funeco.2016.12.006

Downloads

Publicado

11-12-2017

Edição

Seção

CIÊNCIAS BIOLÓGICAS / BIOLOGICAL SCIENCES