Rensch’s rule is broken in Cervidae

Autores

  • Talita Ferreira Amado Rey Juan Carlos University
  • Claudio Juan Bidau Paraná y los Claveles
  • Juan Pablo Zurano Universidade Federal da Paraíba
  • Vanina Raimondi Université de Genève
  • Gabriel Costa Auburn University at Montgomery
  • Pablo Ariel Martinez Universidade Federal de Sergipe

DOI:

https://doi.org/10.29215/pecen.v3i2.1259

Resumo

Resumo: A diferença de tamanho corporal entre machos e fêmeas é conhecida como dimorfismo sexual de tamanho (DST). O surgimento do DST é atribuído na maioria das vezes a processos de seleção sexual, entretanto a seleção natural também pode afetar o DST. Tem se observado em diversos grupos que a intensidade do DST está associada com o tamanho corporal das espécies, padrão conhecido como Regra de Rensch. Nós testamos a regra de Rensch na família Cervidae, um grupo com forte dimorfismo sexual. Analisamos o DST de 35 espécies utilizando análises de regressão tipo II (eixo principal reduzido) filogenética (RMA). Ao analisar a relação entre o tamanho dos machos vs o tamanho das fêmeas observamos que o DST se modifica isometricamente com o aumento do tamanho corporal (RMA = 1.05, p = 0.18). Estes resultados evidenciam que a regra de Rensch não se cumpre nos membros da família Cervidae. Na última década, diversos estudos tem mostrado grupos taxonômicos que não seguem a regra de Rensch. Dado que o tamanho corporal está associado com diversas características ecológicas das espécies, é possível que a associação do tamanho corporal com o DST não seja sempre um efeito causal nos grupos que seguem a Regra de Rensch.

Palavras chave: Dimorfismo sexual de tamanho, mamíferos, RMA filogenético, seleção sexual, tamanho corporal.

Referências

Abouheif E. & Fairbairn D.J. (1997) A Comparative Analysis of Allometry for sexual Size Dimorphism: Assessinf Rensch’s Rule. The American Naturalist, 149(3): 540–562. DOI: 10.1086/286004

Andersson M. (1994) Sexual Selection. Princeton: University Press. 624 p.

Barrio J. (2010) TARUKA Hippocamelus antisensis (d’Orbigny 1834) (p. 77–88). In: Duarte J.M.B. & González S. (Eds). Neotropical Cervidology: Biology and medicine of Latin American deer. Jaboticabal, Brazil: Funep; Gland, Switzerland: IUCN. 393 p.

Blanckenhorn W.U., Dixon A.F.G., Fairbairn D.J., Foellmer M.W., Gibert P., van der Linde K., Meier R., Nylin S., Pitnick S., Schoff C., Signorelli M., Teder T. & Wiklund C. (2007) Proximate Causes of Rensch’s Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time? The American Naturalist, 169(2): 245–257. DOI: 10.1086/510597

Bidau C.J. & Martinez P.A. (2017) Cats and dogs cross the line: domestic breeds follow Rensch’s rule, their wild relatives do not. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding, 21(4): 443–451. DOI: 10.18699/VJ17.263

Clutton-Brock T., Harvey P. & Rudder B. (1977) Sexual dimorphism, socionomic, sex ratio and body weight in primates. Nature, 269: 797–800. DOI: 10.1038/269797a0

Colwell R.K. (2000) Rensch’s Rule Crosses the Line: Convergent Allometry of Sexual Size Dimorphism in Hummingbirds and Flower Mites. The American Naturalist, 156(5): 495–510. DOI: 10.1086/303406

Dale J., Dunn P.O., Figuerola J., Lislevand T., Székely T. & Whittingham L.A. (2007) Sexual selection explains Rensch's rule of allometry for sexual size dimorphism. Proceedings of the Royal Society of London B: Biological Sciences, 274: 2971–2979. DOI: 10.1098/rspb.2007.1043

Darwin C. (1859) On the Origin of Species by Means of Natural Selection. London: John Murray. 502 p.

Darwin C. (1871) The Descent of Man and Selection in Relation to Sex. London: John Murray. 475 p.

Diniz‐Filho J.A.F., Bini L.M., Rodriguez M.A., Rangel T.F.L. & Hawkins B.A. (2007) Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 30(4): 598–608. DOI: 10.1111/j.0906-7590.2007.04988.x

Emlen D.J., Marangelo J., Ball B. & Cunningham C.W. (2005) Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution, 59(5): 1060–1084. DOI: 10.1554/04-642

Fairbairn D.J. (1997) Allometry for Sexual Size Dimorphism : Pattern and Process in the Coevolution of Body Size in Males and Females. Annual Review of Ecology and Systematic, 28: 659–687. DOI: 10.1146/annurev.ecolsys.28.1.659

Fairbairn D.J. (2007) Introduction: the enigma of sexual size dimorphism (p. 27–37). In: Fairbairn D.J., Blanckenhorn W.U. & Székely T. (Eds). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p. DOI: 10.1093/acprof:oso/9780199208784.003.0001

Fairbairn D.J. (2013) Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom. Princenton: Princenton University Press. 312 p.

Fairbairn D.J., Blanckenhorn W.U. & Székely T. (2007) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p. DOI: 10.1093/acprof:oso/9780199208784.001.0001

Felsenstein J. (1985) Phylogenies and the comparative method. The American Naturalist, 125(1): 1–15.

Geist V. (1998) Deer of the World: Their Evolution, Behaviour, and Ecology. Mechanicsburg, PA: Stackpole Books. 421 p.

Gohli J. & Voje K.L. (2016) An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolutionary Biology, 16(222). DOI: 10.1186/s12862-016-0778-x

Hassanin A., Delsuc F., Ropiquet A., Hammer C., Jansen van Vuuren B., Matthee C., Ruiz-Garcia M., Catzeflis F., Areskoug V., Nguyen T.T. & Couloux A. (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biology, 335(1): 32–50. DOI: 10.1016/j.crvi.2011.11.002

Huang S., Drake J.M., Gittleman J.L. & Altizer S. (2015) Parasite diversity declines with host evolutionary distinctiveness: A global analysis of carnivores. Evolution, 69: 621–630. DOI: 10.1111/evo.12611

Isaac J.L. (2005) Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Review, 35: 101–115. DOI: 10.1111/j.1365-2907.2005.00045.x

Jarman P. (1983) Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores. Biological Review, 58: 485–520. DOI: 10.1111/j.1469-185X.1983.tb00398.x

Kappeler P.M. & van Schaik C.P. (2004) Sexual Selection in Primates New and Comparative Perspectives. Cambridge: Cambridge University Press. 300 p.

Lindenfors P., Gittleman J.L. & Jones K.E. (2007) Sexual size dimorphism in mammals (p. 16–26). In: Fairbairn D.J., Blanckenhorn W.U. & Székely T. (Eds). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p.

Martinez P. & Bidau C. (2016) A re-assessment of Rensch’s rule in tuco-tuco (Rodentia: Ctenomydae: Ctenomys) using a phylogentic approach. Mammalian Biology, 81(1): 66–72. DOI: 10.1016/j.mambio.2014.11.008

Martínez P.A., Amado T.F. & Bidau C.J. (2014) A phylogenetic approach to the study of sexual size dimorphism in Felidae and an assessment of Rensch’s rule. Ecosistemas, 23: 27–36. DOI: 10.7818/ECOS.2014.23-1.05

Martinez P.A., Marti D.A., Molina W.F. & Bidau C.J. (2013) Bergmann rule across the Equator: a case study in Cerdocyon thous. Journal of Animal Ecology, 82(5): 997–1008. DOI: 10.1111/1365-2656.12076

Martinez P.A., Pia M.V., Behachar I.A., Molina W.F. & Montoya-Burgos J.I. (2018) The contribution of neutral evolution and adaptive processes in driving phenotipic divergence in a model mammalian species, the Andean fox Lycalopex culpaeus. Journal of Biogeography, 45(5): 1114–1125. DOI: 10.1111/jbi.13189

Martinez P.A., Zurano J.P., Amado T.F., Penone C., Betancur-R R., Bidau C.J. & Jacobina U.P. (2015) Chromosomal diversity in tropical reef fishes is related to body size and depth range. Molecular Phylogenetics and Evolution, 93: 1–4. DOI: 10.1016/j.ympev.2015.07.002

McPherson F.J. & Chenoweth P.J. (2012) Mammalian sexual dimorphism. Animal Reproduction Science, 131: 109–22. DOI: 10.1016/j.anireprosci.2012.02.007

Miller C.W. (2013) Sexual Selection: Male-male Competition (p. 641–646). In: Losos J.B., Baum D.A., Futuyma D.J., Hoekstra H.E., Lenski R.E., Moore A.J., Peichel C.L., Schluter D. & Whitlock M.C. (Eds). The Princenton Guide of Evolution. Princenton: Princenton University Press. 853 p.

Moran S. & Poulin R. (1998) Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology, 12(6): 717–727. DOI: 10.1023/A:1006537600093

Nowak R.M. (1999) Walker's Mammals of the World. Baltimore: John Hopkins University Press. 1936 p.

Olalla-Tárraga M.A., Torres-Romero E.J., Amado T.F. & Martinez P.A. (2015) Phylogenetic path analysis reveals the importance of niche-related biological traits on geographic range size in mammals. Global Change Biology, 21: 3194–3196. DOI: 10.1111/gcb.12971

Payne J. & Francis C. (1985) A Field Guide to the Mammals of Borneo. Malaysia: Sabah Society. 332 p.

Pérez-Barbería F.J., Gordon I.J. & Pagel M. (2002) The origins of sexual dimorphism in body size in ungulates. Evolution, 56: 1276–1285. DOI: 10.1111/j.0014-3820.2002.tb01438.x

Peters R.H. (1983) The Ecological Implications of Body Size. New York: Cambridge University Press. 329 p.

Piross I.S., Harnos A. & Rózsa L. (2019) Rensch’s rule in avian lice: contradictory allometric trends for sexual size dimorphism. Scientific Reports, 9: 7908. DOI: 10.1038/s41598-019-44370-5

Plard F., Bonenfant C. & Gaillard J.M. (2011) Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos, 120(4): 601–606. DOI: 10.1111/j.1600-0706.2010.18934.x

Rangel T.F., Colwell R.K., Graves G.R., Fucikova K., Rahbek C. & Diniz-Filho J.A.F. (2015) Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution, 69: 1301–1312. DOI: 10.1111/evo.12644

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available in: http://www.R-project.org

Reiss M.J. (1989) The Allometry of Growth and Reproduction. Cambridge: Cambridge University Press. 200 p. DOI: https://doi.org/10.1017/CBO9780511608483

Rensch B. (1950) Die Abhangigkeit der relativen Sexualdifferenz von der Korpergrosse. Bonner Zoologische Beiträge, 1: 58–69.

Revell L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217–223. DOI: 10.1111/j.2041-210X.2011.00169.x

Smith F.A. & Lyons S.K. (2011) How big should a mammal be? A macroecological look at mammalian body size over space and time. Proceeding Royal Society B, 366: 2364–2378. DOI: 10.1098/rstb.2011.0067

Smith F.A. & Lyons S.K. (2013) Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group. Chicago: The University of Chicago Press. 280 p.

Sokal R.R. & Rohlf F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research. 3° edition. New York: W.H. Freeman and Com. 887 p.

Stevens R.D. & Platt R.N. (2015) Patterns of secondary sexual size dimorphism in New World Myotis and a test of Rensch’s rule. Journal of Mammalogy, 96(6): 1128–1134. DOI: 10.1093/jmammal/gyv120

Stuart-Fox D.M. & Ord T.J. (2004) Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proceeding Royal Society B, 271: 2249–2255. DOI: DOI: 10.1098/rspb.2004.2802

Tobias J.A., Montgomerie R. & Lyon B.E. (2012) The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philosophical Transaction of Royal Society London, 367: 2274–2293. DOI: 10.1098/rstb.2011.0280

Wiles G.J., Buden D.W. & Worthington D.J. (1999) History of introduction, population status, and management of Philippine deer (Cervus mariannus) on Micronesian islands. Mammalia, 63(2): 193–215.

Downloads

Publicado

03-10-2019

Edição

Seção

CIÊNCIAS BIOLÓGICAS / BIOLOGICAL SCIENCES