Adsorption of naphthenic acid using activated carbon from Orbignya phalerata shell

Abstract

The petrochemical industry involves a process chain with great potential for pollution. The presence of naphthenic acids in oily wastewater causes environmental damage, harming various organisms. The objective of this study was to evaluate the adsorptive capacity of activated carbon derived from Orbignya phalerata (babaçu coconut) shells for the removal of a model naphthenic acid, 1,4-cyclohexanedicarboxylic acid. To do this, kinetics and adsorption isotherms were determined in a batch system. Acid adsorption kinetics in the adsorbent were relatively fast, reaching equilibrium after 60 minutes of contact. Kinetic data was better adjusted to the pseudo-second order model, revealing the chemisorption character of the contaminant adsorption process. Equilibrium data was adjusted according to the Langmuir and Freundlich models, and both presented good fit. Based on the equilibrium constant analysis, activated carbon has higher affinity as an adsorbate and the maximum retained amount of acid obtained experimentally was 417.0 mg g-1. Thus, the equilibrium data obtained for the system suggest that the adsorbent tested has promising outcomes in the removal of acid contaminants present in wastewater from oil refining processes.

Downloads

Download data is not yet available.

References

Anderson, K., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D. W., & Wassell, D. (2013). Removal of naphthenic acids from crude oil using amino acid ionic liquids. Fuel, 108, 715-722. doi: 10.1016/j.fuel.2013.02.030

Azad, F. S., Abedi, J., & Iranmanesh, S. (2013). Removal of naphthenic acids using adsorption process and the effect of the addition of salt. Journal of Environmental Science and Health Part A, 48(13), 1649-1654. doi: 10.1080/10934529.2013.815457

Benally, C., Messele, S. A., & El-Din, M. G. (2019). Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. Water research, 154, 402-411. doi: 10.1016/j.watres.2019.01.053

Bussmeyer,E. C., & Henkes, J. A. (2015). Gestão ambiental na indústria do petróleo: sistema de gestão ambiental nas sondas de perfuração. Revista Gestão & Sustentabilidade Ambiental 3(2), 396-462.

Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis. (2016). PETROBRAS. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). Bussmeyer, E. C. (2015). Gestão ambiental na indústria do petróleo: sistema de gestão ambiental nas sondas de perfuração. Revista Gestão e Sustentabilidade Ambiental, 3(2), 396 -462. doi: 10.19177/rgsa.v3e22014396-462

Frank, R. A, Fischer, K., Kavanagh, R., Burnison, K., Arsenault, G., Headley, J. V., Peru, K. M., Van der Kraak, G., & Solomon, K. R. (2009). Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environmental Science & Technology, 43(2), 266-271. doi: 10.1021/es8021057

Ghimire, N., & Wang, S. (2018). Biological Treatment of Petrochemical Wastewater. Petroleum Chemicals - Recent Insight. Intechopen, doi: 10.5772/intechopen.79655

Giles, C. H., Macewan, T. H., Nakhwa, S. N.& Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society (Resumed), 846, 3973–3993. doi: 10.1039/JR9600003973

Headley, J. V., Peru, K. M., Barrow, M. P., & Derrick, P. J. (2007). Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: the significant influence of solvents. Analytical Chemistry, 79(16), 6222-6229. doi: 10.1021/ac070905w

Ho, Y. S., & Mckay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. doi: 10.1016/S0032-9592(98)00112-5

Islam, M., McPhedran, K. N., Messele, S. A., Liu, Y., & El-Din, M. G. (2018). Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. Chemosphere, 202, 716-725. doi: https://doi.org/10.1016/j.chemosphere.2018.03.149

Jesus, F. A., Silva, J. V., Santos, T. M., Silva, M. S., Aragão, M. G. B., & Silva, G. F. (2019). An evaluation of different preparation methods of the M. Oleífera-based natural coagulating agent in the treatment of produced water from petroleum. Águas Subterrâneas, 33, 221-228. doi: 10.14295/ras.v33i2.29197

Khan, M. K., Riaz, A., Yi, M., & Kim, J. (2017). Removal of naphthenic acids from high acid crude via esterification with methanol. Fuel Process Technology, 165,123-130. doi: 10.1016/j.fuproc.2017.05.015

Martinez-Iglesias, A., Niasar, S. H., Xu, C., & Ray, B. M. (2015). Adsorption of Model Naphthenic Acids in Water with Granular Activated Carbon. Adsorption Science Technology, 33(10), 881-894. doi: 10.1260/0263-6174.33.10.881

Nasir Shah, S, Mutalib, M. I. A., Pilus, R. B. M., & Lethesh, K. C. (2014). Extraction of naphthenic acid from highly acidic oil using hydroxide-based ionic liquids. Energy Fuels, 29(1), 106-111. doi: 10.1021/ef502169q

Niasar, H. S., Li, H., Kasanneni, T. V. R., Ray, M. B., & Xu, C. C. (2016). Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water (OSPW). Chemical Engineering Journal, 293, 189-199. doi: 10.1016/j.cej.2016.02.062

Santaella, S.T., Silva, F.C.G., Costa, K.O., Aguiar, R., Arthaud, I.D.B., Leitão, R. C. (2009). Tratamento de efluentes de refinaria de petróleo em reatores com Aspergillus niger. Engenharia Sanitária Ambiental, 14(1): 139-148. doi: 10.1590/S1413-41522009000100015

Santo, C. (2010). A indústria de refinação de petróleo: características e tratamento das águas residuais. e-LP Engineering and Technology Journal, 1. Disponível em: < https://revistas.ulusofona.pt/index.php/revistae-lp/article/view/1542>

Varadaraj, R., & Brons, C. (2007). Molecular origins of heavy crude oil interfacial activity part 2: Fundamental interfacial properties of model naphthenic acids and naphthenic acids separated from heavy crude oils. Energy Fuels, 21(1), 199-204. doi: 10.1021/ef0604240

Wu, J., Montes, V., Virla, L. D., & Hill, J. M. (2018). Impacts of amount of chemical agent and addition of steam for activation of petroleum coke with KOH or NaOH. Fuel Processing Technology, 181, 53-60. doi: 10.1016/j.fuproc.2018.09.018

Yang, S., Wang, F., Tanga, Q., Wang, P., Xu, Z., & Liang, J. (2019). Utilization of ultralight carbon foams for the purification of emulsified oil wastewater and their adsorption kinetics. Chemical Physics, 516, 139-146. doi: 10.1016/j.chemphys.2018.08.051

Yassine, M. M., & Dabek-Zlotorzynska, E. (2017). Application of ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry for the characterization of organic aerosol: searching for naphthenic acids. Journal of Chromatography A, 1512, 22-33. doi: 10.1016/j.chroma.2017.06.067

Yu, L., Han, M., & He, F. (2017). A review of treating oily wastewater. Arabian Journal of Chemistry, 10, 1913-1922. doi: 10.1016/j.arabjc.2013.07.020
Published
2020-09-28
How to Cite
FERREIRA, Maria Eugênia de Oliveira; MÔNACO, Felipe Santos; OSTROSKI, Indianara Conceição. Adsorption of naphthenic acid using activated carbon from Orbignya phalerata shell. Acta Brasiliensis, [S.l.], v. 4, n. 3, p. 173-177, sep. 2020. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/actabra/index.php/actabra/article/view/279>. Date accessed: 14 dec. 2024. doi: https://doi.org/10.22571/2526-4338279.
Section
Environmental Chemistry