Physiological aspects of angiotensin II-dependent hypertension: an overview

Abstract

Hypertension is one of the main causes of death in developed and developing countries, inducing great impact in human health. Oxidative stress has been implicated as a key mechanism in Angiotensin II-dependent hypertension, since it modulates the baroreflex function in many pathophysiological processes. This study aimed to conduct a literature review addressing the recent mechanisms that promote changes in Angiotensin II-dependent hypertension. Here we highlighted two Angiotensin II-dependent hypertension models: two kidney-one-clip (2K1C) and deoxycorticosterone (DOCA-salt) hypertension. Bases on latest studies presented in important data base, it is possible to suggest that Angiotensin II is one of the main agents in hypertension development and the increase of this peptide is derived by multiple causes, which, in particular, acts as an inductor in oxidative stress production, in turn, it induces changes in a metalloprotease 17 (ADAM-17) and disruption of ACE2 compensatory activity. Thus, new tools that induce a reduction of oxidative stress promote beneficial effects, providing novel therapeutic targets to prevent and treat the Angiotensin II-dependent hypertension.

Downloads

Download data is not yet available.

References

Abadir, P.M. 2011. The frail renin-angiotensin system. Clinics in Geriatrics Medicine, 27(1): 3-65.
Biancardi, V.C.; Son, S.J.; Ahmadi, S.; Filosa, J.A.; Stern, J.E. 2014. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 63(3): 572-9.
Botelho-Ono, M.S.; Pina, H.V.; Sousa, K.H.F.; Nunes, F.C.; Medeiros, I.A.; Braga, V.A. 2011. Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats. Autonomic Neuroscince Basic and Clinical. 159(1-2): 28-44.
Burmeister, M.A.; Young, C.N.; Braga, V.A.; Butler, S.D.; Sharma, R.V.; Davisson, R.L. 2011. In vivo bioluminescence imaging reveal redox-regulated activator protein-1 activaction paraventricular nucleus of mice with renovascular hypertension. Hypertension. 57:289-297.
Carvalho, A.S.; Guimaraes, D.D.; Dantas, B.P.V.; Carreiro, J.N.; Mendes-Junior, L.G.; França-Silva, M.S.; Monteiro, M.M.O.; Alves, N.F.B.; Porpina, S.K.P.; Queiroz, T.M.; Braga, V.A. 2012. Brain Angiotensin-II-derived Reactive Oxygen Species: Implications for High Blood Pressure. Journal of Hypertension.
Chang, S.Y.; Chen, Y.W.; Chenier, I.; Tran sle, M.; Zhang, S.L. 2011. Angiotensin II type II receptor deficiency accelerates the development of nephropathy in type I diabetes via oxidative stress and ACE2. Experimental Diabetes Research. 2011: 1-12.
Chrissobolis, S.; Dinh, Q.N.; Drummond, G.R.; Sobey, C.G. 2017. Role of Oxidative Stress in Hypertension. In: Studies on Atherosclerosis. Springer US: 59-78.
Colombari, E.; Colombari, D.S.; Li, H.; Shi, P.; Dong, Y.; Jiang, N.; Raizada, M.K.; Sumners, C.; Murphy, D.; Paton, J.F. 2010. Macrophage migration inhibitory factor in the paraventricular nucleus plays a major role in sympathoexcitatory response to salt. Hypertension, 53(5): 956-63.
Ferreira, L.G.; Evora, P.R.B.; Capellini, V.K.; Albuquerque, A.A.; Carvalho, M.T.M.; Gomes, R.A.S.; Parolini, M.T.; Celotto, A.C. 2017. Effect of rosmarinic acid on the arterial blood pressure in normotensive and hypertensive rats. Role of Ace. Phytomedicine. 38: 158-165.
Grobe, J.L.; Buehrer, B.A.; Hilzendeger, A.M.; Liu, X., Davis, D.R.; Xu, D.; Sigmund, C.D. 2011. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension. 57(3): 600-607.
Grobe, J.L.; Mecca, A.P.; Lingis, M.; Shenoy, V.; Bolton, T.A.; Machado, J.M. 2007. Prevention of angiotensin II-infuced cardiac remodeling by angiotensin (1-7). American Hournal of Physiology Heart and Circulatory Physiology. 292(2): H742.
Houston, M.C. 2005. Nutraceuticals, vitamins, antioxidants and mineralz in the prevetion and treatment of hypertension. Progress in Cardiovascular Diseases. 47(6): 396-449.
Irigoyen, M.C.; Fiorino, P.; Angelis, K.; Krieger, E.M. 2005. Sistema nervoso simpático e hipertensão arterial: reflexos cardiovasculares. Revista Brasileira de Hipertensão. 12(4): 229-233.
Lai, Z.W.; Hanchapola, I.; Steer, D.L.; Smith, A.I. 2011. Angiotensin-Converting Enzyme 2 ectodomain Shedding Cleavage-Site Identification: Determinants and Constraints. Biochemistry. 50(23): 5182-5194.
Loot, A.E.; Roks, A.J.M.; Henning, R.H.; Tio, R.A.; Suurmeijer, A.J.H.; Boomsma, F.; Gilst, W.H. 2002. Angiotensin (1-7) Attenuates the development of heart failure after myocardial infarction in rats. Circulation. 105(13): 1548-1550.
Loperena, R.; Harrison, D.G. 2017. Oxidative stress and hypertensive diseases. Medical Clinics. 101(1): 169-193.
Marvar, P.J.; Thabet, S.R.; Guzik, T.J.; Lob, H.E.; Mccann, L.A.; Weyand, C.; Gordon, F.J.; Harrison, D.G. 2010. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circulation Research. 107(2): 263-270.
Nishi, E.E.; Oliveira-Sales, E.B.; Bergamaschi, C.T.; Oliveira, T.G.; Boim, M.A.; Campos. R.R. 2010. Chronic antioxidante treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats. American Journal of Hypertension. 23: 473-480.
Paton, J.F.R.; Wang, S.; Polson, J.W.; Kasparov, S. 2008. Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. Journal of Molecular Medicine. 86(6): 705-710.
Prieto-Carrasquero, M.C.; Botros, F.T.; Pagan, J.; Kobori, H.; Seth, D.M.; Casarini, D.E.; Navar, L.G. 2008. Collecting duct renin is upregulated in both kdneys of 2-kidney, 1-clip Goldblatt hypertensive rats. Hypertension. 51(6): 1590-1596.
Queiroz, T.M.; Giumarães, D.D.; Mendes-Junior, L.G.; Braga, V.A. 2012. α-Lipoic Acid Reduces Hypertension and Increases Baroreflex Sensitivity in Renovascular Hypertensive Rats. Molecules. 17(11): 13357-13367.
Queiroz, T.M.; Xia, H.; Filipeanu, C.M.; Braga, V.A.; Lazartigues, E. 2015. α-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. American Journal of Physiology Heart and Circulatory Physiology. 309(5): 926-934.
Rabelo, L.A.; Todiras, M.; Nunes-Souza, V.; Qadri, F.; Szijártó, I.A.; Gollasch, M.; Penninger, J.F.; Baeder, M.; Santos, R.A.; Alenia, N. 2016. Genetic deletion of ACE2 induces vascular dysfunction in C57BL/6 mice: role of nitric oxide imbalance and oxidative stress. PloS one. 11(4): 1-16.
Salgado, M.C.; Justo, S.V.; Joaquim, L.F.; Fazan, R.Jr.; Salgado, H.C. 2009. Role of nitric oxide and prostanoids in attenuation of rapid baroreceptor resetting. American Journal of Physiology Heart and Circulatory Physiology. 290(3): 1059-1063.
Santiago, N.M.; Guimarães, P.S.; Sirvente, R.A.; Oliveira, L.A.; Irigoyen, M.C.; Santos, R.A.; Campagnole-Santos, M.J. 2010. Lifetime overproduction of circulating Angiotensin (1-7) attenuates deoxycorticosterone acetate-salt hypertension-induced cardiac dysfunction and remodeling. Hypertension, 55(4): 889-96.
Santos, P.C.J.L.; Krieger, J.E.; Pereira, A.C. 2012. Renin–angiotensin system, hypertension, and chronic kidney disease: pharmacogenetic implications. Journal of pharmacological sciences. 120(2): 77-88.
Santos, R.A. 2014. Angiotensin (1-7). Hypertension. 63(6): 1138-47.
Saurabh, R.S.; Prateek, S.S.; Jegadeesh, R. 2014. The determinants and scope of public health interventions to tackle the global problem of hypertension: A review. International Journal of Preventive Medicine. 5 (7): 807-812.
Schiavone, M.T.; Santos, R.A.S.; Brosnihan, K.B.; Khosla, M.C.; Ferrario, C.M. 1988. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin (1-7) heptapeptide. Proceedings of the National Academy of Sciences USA. 85(11): 4095-8.
Simão, M.; Hayashida, M.; Santos, C.B.; Cesarino, E. J.; Nogueira, M.S. 2008. Hipertensão Arterial Entre Universitários da Cidade de Lubango, Angola. Revista Latino Americana de Enfermagem. 16(4).
Sebastião, D.; Silva Jr.; Jara, Z.P.; Peres, R.; Lima, L.S.; Scavone, C.; Montezano, A.C.; Touys, R.M.; Casarini, D.E.; Michelini, L.C. 2017. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PloS one. 12(12): e0189535.
Silva Jr, S.D.; Jara, Z.P.; Peres, R.; Lima, L.S.; Scavone, C.; Montezano, A.C.; Touyz, R. M.; Casarini, D.E.; Michelini, L.C. 2017. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PloS one. 12(12): e0189535, 2017.
Siti, Hawa N.; Kamisah, Y.; Kamsiah, J. 2015. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular pharmacology. 71: 40-56.
Thieme, M.; Sivritas S.H.; Mergia E.; Potthoff S.A.; Guang Yang G.; Hering L.; Grave K.; Hoch H.; Rump L.C.; Stegbaue J. 2017. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction. American Journal of Physiology-Renal Physiology. 12(3): F474-F481.
VII Diretriz Brasileira de Hipertensão Arterial. 2016. Arquivos Brasileiros de Cardiologia. 107(3).
Waki, H.; Gouraud, S.S.; Maeda, M.; Raizada, M.K.; Paton, J.F. 2011. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respiratory Physiology and Neurobiology. 178(3): 422-428.
Xia, H.; Sriramula, S.; Chhabra, K.H.; Lazartigues, E. 2013. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circulation Research. 113(9): 1087-1096.
Xiao, L.; Gao, L.; Lazartigues, E.; Zucker, I.H. 2011. Brain-Selective Overexpression of Angiotensin-Converting Enzyme 2 Attenuates Sympathetic Nerve Activity and Enhances Baroreflex Fuction In Chronic Heart failure. Hypertension. 58: 1057-1065.
Zhang, Y.; Yu, Y.; Zhang, F.; Zhong, M.K.; Shi, Z.; Gao, X.Y.; Want, W.; Zhu, G.Q. 2006. NAD(P)H oxidase in paraventricular nucleus contributed to the effect of angiotensin II cardiac sympathetic afferent reflex. Brain Research. 1082(1): 132-141.
Published
2018-05-28
How to Cite
CALZERRA, Natália Tabosa Machado; GOMES, Camila Figueiredo; DE QUEIROZ, Thyago Moreira. Physiological aspects of angiotensin II-dependent hypertension: an overview. Acta Brasiliensis, [S.l.], v. 2, n. 2, p. 69-73, may 2018. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/76>. Date accessed: 04 aug. 2020. doi: https://doi.org/10.22571/2526-433876.