Adsorption of textile dyes using metal-organic framework [Cu3(BTC)2(H2O)3]n obtained by electrochemical synthesis


Metal-Organic Framework (MOF) is a coordination network with organic binders and porous structure. The objective of this research was to synthesize the MOF of [Cu3(BTC)2(H2O)3]n by electrochemical route and to apply it as adsorbent material for removal of dyes from tissues in effluents. The synthesis of this MOF was given electrochemically via amperometric, setting the potential at 12V for 17 min, resulting in 73% yield of a blue solid. The final product was used in its crude form and characterized by FTIR and cyclic voltammetry. This MOF, when in contact with a mixture that simulates an effluent of the textile industry, allowed its discoloration, accompanied by the decanting of a colored solid. This depigmentation was also observed by analysis of the supernatant by UV-Vis spectroscopy. The FTIR spectrum of the solid decanted after mixing the MOF with the dye showed the adsorption of the pigments from the solution by the MOF. This solid MOF residue was environmentally advantageous because it was easily separated from the treated effluent and being regenerated and reusable. This differentiates it from the sludge generated in traditional coagulation/flocculation process that can be harmful to the environment.


Download data is not yet available.


ABIT - Associação Brasileira da Indústria Têxtil e de Confecções. Perfil do setor, 2017. Disponível em: Acesso em: 28 de nov. 2017.
Aquino, A.; Ferreira, J.A.; Navickiene, S.; Wanderley, K.A.; de Sá, G.F.; Júnior, S.A. 2012. Investigating the Potential of Metal-Organic Framework Material as an Adsorbent for Matrix Solid-Phase Dispersion Extraction of Pesticides During Analysis of Dehydrated Hyptis pectinata Medicinal Plant by GC/MS. Journal of AOAC International, 95 (5): 1338-1342.
Azhar, M.R.A.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wanga, S. 2017. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. Journal of Colloid and Interface Science, 490 (2017): 685-694.
Barros, A.L.; Malo, D.L.; Alves Jr., S. 2016. Uso da Rede de Coordenação Fe(BTC) na Sorção do Corante Índigo Carmim. In: Severino Alves Júnior. (Org.). Metal Organic Frameworks (MOF's): da síntese à aplicações em meio ambiente, saúde e segurança pública. CRV, Curitiba, p. 89-108.
Batten, S.R.; Champness, N.R.; Chen, X.M.; Martinez, J.G.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. 2013. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(8): 1715-1724.
DIEESE - Diagnóstico do setor têxtil e de confecções de caruaru e região. SEJE/DIEESE: Recife - PE. Relatório de Pesquisa. Disponível em: Acesso em: 28 de nov. 2017.
Gois, F.A.; Souza, G.A.; Oliveira, M.J.; Lima, R.S.; Koslowski, L.A.D. 2016. Análise da qualidade da água quanto ao despejo industrial têxtil no Rio dos Índios. Caderno Meio Ambiente e Sustentabilidade, 9(5): 15-27.
Haque, E.; Jun, J.W.; Jhung, S.H. 2011. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 185(1): 507-11.
Ibanez, J.G.; Olavarrieta, J.L.V.; Rivera, L.H.; Sanchez, M.A.G.; Pintor, E.G. 2012. A novel combined electrochemical-magnetic method for water treatment. Water Science and Technology, 65(11): 2079-2083.
Ke, F.; Qiu, L.G.; Yuan, Y.P.; Peng, F.M.; Jiang, X.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. 2011. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. Journal of Hazardous Materials, 196: 36-43.
Lee, Y.R.; Kim, J.; Ahn, W.S. 2013. Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30(9): 1667-1680.
München, S.; Adaime, M.B.; Perazolli, L.A.; Amantéa, B.E.; Zaghete, M.A. 2015. Jeans: a relação entre aspectos científicos, tecnológicos e sociais para o ensino de química. Química Nova na Escola, 37(3): 172–179.
Rocha, J.C.; Rosa, A.H.; Cardoso, A.A. 2009. Introdução à Química Ambiental. 2da ed. Bookman, Porto Alegre, 256p.
Schlesinger M.; Schulze S.; Hietschold M.; Mehring M. 2010. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Materials, 132: 121-127.
Seo, Y.K.; Hundal, G.; Jang, I.T.; Hwang, Y.K.; Jun, C.H.; Chang, J.S. 2009. Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous and Mesoporous Materials, 119: 331-337.
Serna, S.L.; Tolentino, M.A.O.; Núñez, M.L.L.; Cruz, A.S.; Vargas, A.G.; Sierra, R.C.; Beltrán, H.I.; Flores, J. 2012. Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: The effect of the method of synthesis. Journal of Alloys and Compounds, 540: 113-120.
Silva, G.G. 2015. Métodos de síntese de estruturas metal-orgânicos, derivados de [Cu3(BTC)2.(H2O)3]n e derivados e aplicações para sensores eletroquímicos. Tese de Doutorado, Departamento de Química Fundamental/Universidade Federal de Pernambuco, Recife, Pernambuco, 185p. Acesso em: 28 de nov. 2017.
How to Cite
DA SILVA, Renata Pereira et al. Adsorption of textile dyes using metal-organic framework [Cu3(BTC)2(H2O)3]n obtained by electrochemical synthesis. Acta Brasiliensis, [S.l.], v. 2, n. 1, p. 11-14, jan. 2018. ISSN 2526-4338. Available at: <>. Date accessed: 03 dec. 2021. doi:
Environmental Chemistry