Dinâmica de nitrogênio em microbacias na Mata Atlântica e Cerrado no Nordeste brasileiro

Nutrients in streams in different types of Brazilian biomes

  • Jessica Carneiro Souza Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brasil http://orcid.org/0000-0003-3172-1209
  • Bianca Souza Cana Verde Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brasil http://orcid.org/0000-0002-8667-4211
  • Haialla Carolina Rialli Santos Brandão Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brasil http://orcid.org/0000-0003-3017-8654
  • Daniela Mariano Lopes Silva Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brasil http://orcid.org/0000-0002-9741-6170

Resumo

O objetivo deste estudo foi determinar as concentrações de nitrogênio (N) em dois biomas, Mata Atlântica (AF) e Cerrado (CR), na interface entre os ecossistemas terrestre-aquático, avaliando o N na vegetação (serapilheira), no solo e na água em microbacias em áreas de proteção ambiental no nordeste brasileiro. Foram realizadas análises químicas e físicas do solo e determinadas as taxas de mineralização e nitrificação. Na água, foram determinadas as formas de nitrogênio orgânico, inorgânico e particulado por espectrofotometria. Foram realizadas duas coletas, uma no período seco (outubro e novembro de 2019) e outra no chuvoso (fevereiro e março de 2020) em duas áreas de preservação ambiental, na Reserva Particular de Patrimônio Natural - Estação Veracel (Mata Atlântica) e Parque Nacional Chapada Diamantina (Cerrado), sendo amostrados cinco microbacias em cada bioma. A concentração de N na serapilheira foi semelhante entre os biomas, apresentando médias de 0,69%. Em relação ao solo e a água, as concentrações de N foram maiores na AF comparados a CR, com concentrações de 0,95 ± 0,40 e 0,59 ± 0,14 µg.Ng-1 de nitrato no solo de AF e CR, respectivamente e 3,53 ± 2,51 µM de nitrato na água em AF e 0,76 ± 0,78 µM em CR.

##plugins.generic.usageStats.downloads##

Não há dados estatísticos.

Referências

Alves, V. N., Torres, J. L. R., Lana, R. M. Q., & Pinheiro, M. H. O. (2018). Nutrient cycling between soil and leaf litter in the Cerrado (Brazilian savanna) on eutrophic and dystrophic Neosols. Acta Botanica Brasilica, 32(2), 169–179. doi: 10.1590/0102-33062017abb0369
Austin, A. T., & Ballare, C. L. (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences, 107(10), 4618–4622. doi: 10.1073/pnas.0909396107
Barbosa, V., Barreto-Garcia, P., Gama-Rodrigues, E., & Paula, A. D. (2017). Biomassa, carbono e nitrogênio na serapilheira acumulada de florestas plantadas e nativa. Floresta e Ambiente, 24. doi: 10.1590/2179-8087.024315
Benites, V. M., Schaefer, C. E. G., Simas, F. N., & Santos, H. G. (2007). Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Brazilian Journal of Botany, 30, 569-577. doi: 10.1590/S0100-84042007000400003
De Santana, R. O., Delgado, R. C., & Schiavettic, A. (2020). The past, present and future of vegetation in the Central Atlantic Forest Corridor, Brazil. Remote Sensing Applications: Society and Environment, 100357 doi: 10.1016/j.rsase.2020.100357
Flindt, M. R. & Lillebø, A. I. (2005). Determination of total nitrogen and phosphorus in leaf litter. In Graça, M. A. S.; Bârlocher, F.; Gessner, M.O. (org.) Methods to study litter decomposition: a practical guide. 329 p. Berlin, Germany: Springer.
García-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., & Hättenschwiler, S. (2015). The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30(5), 819–829. doi: 10.1111/1365-2435.12589
Grasshoff, K.; Erhardt, M.; Kremling, K. (1983). Methods of seawater analysis. Weinheim, Verlag Chemie.
Gonçalves, J. F. Jr.; França, J.S.; Callisto, M. (2006). Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Brazilian archives of biology and technology. 49, 967-973. doi: 10.1590/S1516-89132006000700014
Hedin, L. O., Armesto, J. J., & Johnson, A. H. (1995). Patterns of Nutrient Loss from Unpolluted, Old-Growth Temperate Forests: Evaluation of Biogeochemical Theory. Ecology, 76(2), 493–509. doi: 10.2307/1941208
Martinelli, L. A., Nardoto, G. B., Soltangheisi, A., Reis, C. R. G., Abdalla-Filho, A. L., Camargo, P. B., … Vieira, S. A. (2020). Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry, 154(2), 405–423. doi: 10.1007/s10533-020-00714-2
Mitre, S. K., Mardegan, S. F., Caldeira, C. F., Ramos, S. J., Furtini Neto, A. E., Siqueira, J. O., & Gastauer, M. (2018). Nutrient and water dynamics of Amazonian canga vegetation differ among physiognomies and from those of other neotropical ecosystems. Plant Ecology, 219(11), 1341–1353. doi: 10.1007/s11258-018-0883-6
Miranda, L. d’Afonsêca P. de, Vitória, A. P., & Funch, L. S. (2011). Leaf phenology and water potential of five arboreal species in gallery and montane forests in the Chapada Diamantina; Bahia; Brazil. Environmental and Experimental Botany, 70(2-3), 143–150. doi: 10.1016/j.envexpbot.2010.08.011
Oliveira, R. S., Galvão, H. C., de Campos, M. C., Eller, C. B., Pearse, S. J., & Lambers, H. (2015). Mineral nutrition of campos rupestres plant species on contrasting nutrient‐impoverished soil types. New Phytologist, 205(3), 1183-1194. doi: 10.1111/nph.13175
Peña-Peña, K., & Irmler, U. (2016). Moisture seasonality, soil fauna, litter quality and land use as drivers of decomposition in Cerrado soils in SE-Mato Grosso, Brazil. Applied Soil Ecology, 107, 124–133. doi: 10.1016/j.apsoil.2016.05.007
Parron, L. M., Bustamante, M. M. C., Markewitz, D. (2011). Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry, 10, 89-104. doi: 10.1007/s10533-010-9537-z
Piccolo, M. C., Neill, C., & Cerri, C. C. (1994). Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence. Plant and Soil, 162(1), 61–70. doi: 10.1007/BF01416090
Resende, J. C. F., Markewitz, D., Klink, C. A., Bustamante, M. M. D. C., & Davidson, E. A. (2011). Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry. 105(1), 105–118.
doi: 10.1007/s10533-010-9531-5
Rezende, R. S., Sales, M. A., Hurbath, F., Roque, N., Gonçalves, J. F., & Medeiros, A. O. (2017). Effect of plant richness on the dynamics of coarse particulate organic matter in a Brazilian Savannah stream. Limnologica, 63, 57-64. doi: 10.1016/j.limno.2017.02.002
Ronquim, C. C. (2010). Conceitos de fertilidade do solo e manejo adequado para as regiões tropicais. – Boletim de Pesquisa e Desenvolvimento. Campinas: Embrapa Monitoramento por Satélite, 26. Recovered from http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1128267
RPPN - Estação Veracel. (2016). Plano de Manejo. Eunápolis: Veracel Celulose, Gerência de Sustentabilidade, e Conservação Internacional.
Schorn, L. A., Galvão, F. (2006) Dinâmica da regeneração natural em três estágios sucessionais de uma Floresta Ombrófila Densa em Blumenau, SC. Floresta, 36: 59-74. doi: 10.5380/rfv36i1.5508
Silva D.M.L. (2005). Dinâmica de nitrogênio em microbacias do Estado de São Paulo. (Tese de Doutorado). Universidade de São Paulo.
Silveira, F. A. O., Negreiros, D., Barbosa, N. P. U., Buisson, E., Carmo, F. F., Carstensen, D. W., Lambers, H. (2016). Ecology and evolution of plant diversity in the endangered “Campo Rupestre”: a neglected conservation priority. Plant and Soil, 403(1-2), 129–152. doi: 10.1007/s11104-015-2637-8
Souza, J. C., Pereira, M. A., Costa, E. N. D., Silva, D. M. L. (2017). Nitrogen dynamics in soil solution under different land uses: Atlantic forest and cacao–AFS cacao-cabruca system. Agroforestry Systems, 92(2), 425–435. doi: 10.1007/s10457-017-0077-6
Taylor, P. G., Wieder, W. R., Weintraub, S., Cohen, S., Cleveland, C. C., & Townsend, A. R. (2015). Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed. Ecology, 96(5), 1229–1241. Doi: 10.1007/s11707-017-0647-y
Villela, D., de Mattos, E., Pinto, A., Vieira, S., & Martinelli, L. (2012). Carbon and nitrogen stock and fluxes in coastal Atlantic Forest of southeast Brazil: potential impacts of climate change on biogeochemical functioning. Brazilian Journal of Biology, 72(3), 633–642. doi: 10.1590/S1519-69842012000400003
Wohl, E. (2017) The significance of small streams. Frontiers of Earth Science, 11(3), 447–456. doi: 10.1007/s11707-017-0647-y
Publicado
2022-09-30
Como Citar
SOUZA, Jessica Carneiro et al. Dinâmica de nitrogênio em microbacias na Mata Atlântica e Cerrado no Nordeste brasileiro. Acta Brasiliensis, [S.l.], v. 6, n. 3, p. 72-78, set. 2022. ISSN 2526-4338. Disponível em: <http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/620>. Acesso em: 01 out. 2023. doi: https://doi.org/10.22571/2526-4338620.
Seção
Ecologia