Climatic niche as a modeler of the distribution pattern of Schinopsis brasiliensis in the Neotropical

Abstract

Schinopsis brasiliensis Engl. (Anacardiaceae) is a woody medicinal plant interesting to research and conservation due to timber extraction, high pharmacological potential and cultural value in the Brazilian semi-arids. In this research, we modeled the potential distribution of the species in the Neotropical, identified the climate limiting factors of its distribution and measured the percentage of adequate protected areas. The model was generated in the Maxent software, through the combination of 469 registers of the species occurrence and nine climate variables from the WorldClim data base and presented good development  (AUC = 0.976).  The potentially adequate areas were estimated along the dry diagonal in South America, in addition to fragmented areas at the coast of Peru and Ecuador. Precipitation, temperature and atmospheric humidity were the most influential variables on the prediction of climatically viable areas for the species. The results indicate low representation of protected areas (0.003%) in highly adequate areas, which demonstrates the necessity of expansion, implementation of measures of conservation and management of S. brasiliensis. The findings in this study, therefore, can be used for scientific support on delineating these measurements.

Downloads

Download data is not yet available.

References

Alves, C. A. B., Leite, A. P., Ribeiro, J. E. da S., Guerra, N. M., Santos, S. da S., Souza, R. S., Carvalho, T. K. N., Lucena, C. M. de, Fonseca, A. M. F. de A., Lins Filho, J. A., Souto, J. S., & Lucena, R. F. P. de. (2020). Distribution and future projections for Schinopsis brasiliensis Engler (Anacardiaceae) in the semi-arid region of Brazil. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 7(17), 1361–1378. https://doi.org/10.21438/rbgas(2020)071721
Banda, K. R., Delgado-Salinas, A., Dexter, K. G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, G. M., Weintritt, J., Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Aranguren, A. B., Arteaga, J. C., Aymard, G., Castaño, A., Ceballos-Mago, N., … Pennington, R. T. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353(6306), 1383–1388. https://doi.org/10.1126/science.aaf5080
Barbosa, D. D. A., Barbosa, M. D. A., & Lima, L. D. (2003). Fenologia de espécies lenhosas da Caatinga. In I. R. Leal, M. Tabarelli & J. M. C. Silva, Ecologia e conservação da Caatinga (1a ed., Cap.16, pp. 657-694). Recife: Ed. Universitária UFPE.
Borchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437–1449. https://doi.org/10.2307/1937467
Brasil. (2008). Instrução Normativa N° 6, 23 de setembro de 2008. Diário Oficial da União: seção 1, Brasília, DF, p. 75.
Brasil. (2014) . Portaria Nº 443, de 17 de dezembro de 2014. Diário Oficial da União: seção 1, Brasília, DF, p.25.
CRIA (Centro de Referência e Informação Ambiental). (2011). Specieslink - simple search. http://www.splink.org.br/index (Accessed 23 August 2019).
Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Lima, D. M., Tenório, S., & Gomes, K. (2014). Dieta por Anodorhynchus leari Bonaparte, 1856 (Aves: Psittacidae) em palmeira de licuri na caatinga baiana. Atualidades ornitológicas, 178, 50-54. http://www.ao.com.br/download/AO178_50.pdf
Lima, V. V. F., Scariot, A., & Sevilha, A. C. (2020). Predicting the distribution of Syagrus coronata palm: Challenges for the conservation of an important resource in northeastern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 269 (July 2019), 151607. https://doi.org/10.1016/j.flora.2020.151607
Martinelli, Gustavo & Moraes, M.A. (2013). Livro Vermelho da Flora do Brasil (1a ed.). Rio de Janeiro: Andrea Jakobsson.
Medeiros, A. C. D., Alencar, L. C. B., & Castro Felismino, D. D. (2018). Schinopsis brasiliensis Engl. In U. P. Albuquerque, U. Patil & A. Máthé, Medicinal and Aromatic Plants of South America (1a ed., pp. 421-429). Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1552-0_38
Mogni, V. Y., Prado, D. E., & Oakley, L. J. (2017). Notas nomenclaturales en el género Schinopsis (Anacardiaceae). Boletín de la Sociedad Argentina de Botánica, 52(1), 185-191. https://doi.org/10.31055/1851.2372.v52.n1.16918
Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual review of ecology and systematics, 67-88. https://doi.org/10.1146/annurev.es.17.110186.000435
Nogueira, F. C., Pagotto, M. A., Roig, F. A., Lisi, C. S., & Ribeiro, A. S. (2017). Responses of tree-ring growth in Schinopsis brasiliensis to climate factors in the dry forests of northeastern Brazil. Trees - Structure and Function, 32(2), 453–464. https://doi.org/10.1007/s00468-017-1642-3
Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the Concepts Right. Natureza & Conservação, 10(2), 102–107. https://doi.org/10.4322/natcon.2012.019
Phillips, S. J., Anderson, R. P., & Schapired, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 6(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Posadas, P & Ortiz-Jaureguizar, E. (2011). Evolução da Região Andina da América do Sul. In: C.J.B. Carvalho & E.A.B. Almeida, Biogeografia Da América Do Sul Padrões E Processos (1a ed., Cap. 11, pp. 175-183). São Paulo: Roca.
Prado, D. E., & Gibbs, P. E. (1993). Patterns of Species Distributions in the Dry Seasonal Forests of South America. Annals of the Missouri Botanical Garden, 80(4), 902. https://doi.org/10.2307/2399937
Punyasena, S. W., Eshel, G., & McElwain, J. C. (2008). The influence of climate on the spatial patterning of Neotropical plant families. Journal of Biogeography, 35(1), 117–130. https://doi.org/10.1111/j.1365-2699.2007.01773.x
QGIS Development Team. (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project.
R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, versão 3.3.3.
Santos, C. C. de S., Guilhon, C. C., Moreno, D. S. A., Alviano, C. S., Estevam, C. dos S., Blank, A. F., & Fernandes, P. D. (2018). Anti-inflammatory, antinociceptive and antioxidant properties of Schinopsis brasiliensis bark. Journal of Ethnopharmacology, 213, 176–182. https://doi.org/10.1016/j.jep.2017.11.012
Weeks, A., Zapata, F., Pell, S. K., Daly, D. C., Mitchell, J. D., & Fine, P. V. A. (2014). To move or to evolve: Contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae). Frontiers in Genetics, 5(NOV). https://doi.org/10.3389/fgene.2014.00409
Published
2023-06-06
How to Cite
DE MEDEIROS, Ana Paula et al. Climatic niche as a modeler of the distribution pattern of Schinopsis brasiliensis in the Neotropical. Acta Brasiliensis, [S.l.], v. 7, n. 1, p. 1-6, june 2023. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/605>. Date accessed: 18 may 2024. doi: https://doi.org/10.22571/2526-4338605.
Section
Biology of Conservation