Feeding substrate selection is not affected by the soil and environment temperature during the foraging of Constrictotermes cyphergaster
Abstract
Termites are known as wood consumers, although some species eat other substrates. Assessing resource selection is important to understanding their biology. The present study provides information on the foraging behavior of Constrictotermes cyphergaster (Blattaria, Termitidae) in a dry forest area of Caatinga in Brazil. We aimed to verify the frequency of resource exploitation by termites as a function of environmental and soil temperatures. We found no significant differences in resource exploitation as a function of temperature, which is interesting because this variable is often reported as modulating foraging activity in some other termite species. This species forages on open trails at high temperatures in the Brazilian semi-arid zone. Environmental changes may affect the dynamics of their behavior and, consequently, the ecosystem, since C. cyphergaster influences the carbon cycle and can modify the soil. Our study provides a basis for future research intending to understand the adaptations of this termite to live in the drylands.
Downloads
References
Alamu, O., & Ewete, F. (2021). Influence of seasonal changes, weather factors and soil depth on the foraging activities of subterranean termites in Eucalyptus plantations. International Journal of Tropical Insect Science, 41, 1213–1221.
Araujo, K., Andrade, A. & Raposo, R. (2005). Análise das condições meteorológicas de São João do Cariri no semiárido paraibano. Geografia, 14, 61-72.
Barbosa, M., Lima, I., Cunha, J., Agra, M. & Thomas, W. (2007). Vegetação e flora no cariri paraibano. Oecologia Australis, 11, 313-322.
Barbosa-Silva, A. M., Silva, A. C., Pereira, E. C. G., Buril, M. L. L., Silva, N. H., Cáceres, M. E. S., Aptroot, A. & Bezerra-Gusmão, M. A. (2019). Richness of lichens consumed by Constrictotermes cyphergaster in the Semi-arid Region of Brazil. Sociobiology, 66, 154-160. doi: 10.13102/sociobiology.v66i1.3665
Bernays, E. A. (1985). Regulation of feeding behavior. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology (pp. 1-32). Pergamon: Oxford.
Cao, R., & Su, N. Y. (2014). Tunneling and food transportation activity of four subterranean termite species (Isoptera: Rhinotermitidae) at various temperatures. Annals of the Entomological Society of America, 107, 696–701. doi: 10.1603/AN13181
Cao, R., & Su, N.-Y. (2016). Temperature preferences of four subterranean termite species (Isoptera: Rhinotermitidae) and temperature-dependent survivorship and wood-consumption rate. Annals of the Entomological Society of America, 109(1), 64–71.
Clarke, M. W., Thompson, G. J., Sinclair, B. J. (2013). Cold tolerance of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae), in Ontario. Environmental Entomology, 42, 805–810. doi: 10.1603/EN12348
Chrispeels, M.J. & Raikhel, N.V. (1991). Lectins, lectin genes and their role in plant defense. Plant Cell, 3, 1–9.
Cornelius, M. L. & Osbrink, W. L. A. (2011). Effect of seasonal changes in soil temperature and moisture on wood consumption and foraging activity of formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 104, 1024–1030. doi: 10.1603/EC10332
Ettershank, G., Ettershank, J., & Whitford, W. (1980). Location of food sources by subterranean termites. Environmental Entomology, 9(5), 645–648.
Evans, T. & Gleeson, P. (2001). Seasonal and daily activity patterns of subterranean, wood-eating termite foragers. Australian Journal of Zoology, 49, 311-321.
Fei, H. & Henderson, G. (2002). Formosan subterranean termite (Isoptera: Rhinotermitidae) wood consumption and worker survival as affected by temperature and soldier proportion. Environmental Entomology, 31, 509–514. doi: 10.1603/0046-225X-31.3.509
Haverty, M. I., Tabuchi, R. L., Vargo, E. L., Cox, D. L., Nelson, L. J. & Lewis, V. R. (2010). Response of Reticulitermes hesperus (Isoptera: Rhinotermitidae) colonies to baiting with lufenuron in Northern California. Journal of Economic Entomology, 103, 770–780. doi: 10.1603/ec09088
Johnson, K. A., & Whitford, W. G. (1975). Foraging ecology and relative importance of subterranean termites in Chihuahuan desert ecosystems. Environmental Entomology, 4(1), 66–70.
Lopes, J. F. B., Andrade, E. M., Crisóstomo, L. A. & Rodrigues, M. M. A. (2017). Potential for nutrient contribution from litter in a seasonally dry forest. Revista Agroambiente, 11, 269-276.
MacArthur, R. H. & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100, 603-609.
Mackay, W. P., Silva, S., Lightfoot, D. C., Pagani, M. I., & Whitford, W. G. (1986). Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. American Midland Naturalist, 45–56.
Mathews, A.G.A. (1977). Studies of termites from the Mato Grosso State, Brazil. Rio de Janeiro: Academia Brasileira de Ciências.
Moura, F.M.S., Vasconcellos, A., Araújo, V.F.P. & Bandeira A.G. (2006). Feeding Habit of Constrictotermes cyphergaster (Isoptera, Termitidae) in an area of Caatinga, Northeast Brazil. Sociobiology, 43, 21-26.
Moura, F. M. S., Vasconcellos, A., Araujo, V. F. P. & Bandeira, A. G. (2008). Consumption of vegetal organic matter by Constrictotermes cyphergaster (Isoptera, Termitidae, Nasutitermitinae) in an area of Caatinga, Northeastern Brazil. Sociobiology, 51, 181-189.
Nalepa, C. A. 1994. Nourishment and the evolution of termite eusociality. In: J.H. Hunt & C.A. Nalepa, (Eds.), Nourishment and Evolution in Insect Societies (pp. 57-104). Boulder, Colorado: Westview Press.
Oliveira, M. H., Viana-Junior, A. B., Nascimento, C. C. & Bezerra-Gusmão, M. A. (2021). Worker dimorphism in nasute termites reflects different tasks during food collection. Journal of Insect Behavior, 34, 96-105. 10.1007/s10905-021-09773-1
Peumans, W. J. & Van Damme, E.J.M. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352.
R Core Team 2021. R: A language and environment for statistical computing. R foundation for Statistical Computing, Viena, Austria.
Ripa, R., Luppichini, P., Su, N. Y. & Rust, M. K. (2007). Field evaluation of potential control strategies against the invasive eastern subterranean termite (Isoptera: Rhinotermitidae) in Chile. Journal of Economic Entomology, 100, 1391–1399.
Sá, R. A., Napoleão, T. H.; Santos, N. D. L.; Gomes, F. S.; Albuquerque, A. C.; Xavier, H. S.; Coelho, L. C. B. B., Bieber, L. W. & Paiva, P. M. G. (2008). Induction of mortality on Nasutitermes corniger (Isoptera, Termitidae) by Myracrodruon urundeuva heartwood lectin. International Biodeterioration & Biodegradation, 62, 460-464. doi: 10.1016/j.ibiod.2008.04.003
Smith, J. L., & Rust, M. K. (1994). Temperature preferences of the western subterranean termite, Reticulitermes hesperus Banks. Journal of arid environments, 28, 313–323.
Su, N. Y. (2000). Studies on the foraging of subterranean termites (Isoptera). Sociobiology, 37, 253–260.
Traniello, J.F.A. & Leuthold, R.H. (2000). Behavior and ecology of foraging in termites. In: T. Abe, D.E. Bignell & M. Higashi (Eds.) Termites: Evolution, Sociality, Symbioses, Ecology (pp. 141-168). Dordrecht: Springer. doi: 10.1007/978-94-017-3223-9_7
Ulyshen, M. D. (2016). Wood decomposition as influenced by invertebrates. Biological Reviews, 91, 70-85. doi: 10.1111/brv.12158