Synthesis, characterization, and antimicrobial evaluation of novel 1,2,4-oxadiazoles derived from trans-3,4-(methylenedioxy)-cinnamic acid
Abstract
Compounds containing heterocyclic ring systems are of great importance both medicinally and industrially. Five-membered 1,2,4-oxadiazole heterocycles have received considerable attention because of their unique bioisosteric properties and unusual wide spectrum of biological activities. In this study, a series of 2-(3-aryl-1,2,4-oxadiazol-5-yl)-trans-3,4-(methylenedioxy)-cinnamyl derivatives was synthesized and characterized, and in vitro experimental models were used to evaluate their antimicrobial activity. Synthesis, which involved microwave irradiation for 5 min, provided moderate yields of 1,2,4-oxadiazole (34–50%). Infrared (IR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy were used to determine the structures of 1,2,4-oxadiazole. The disk diffusion method was used to test the antibacterial activity of the novel 1,2,4-oxadiazole derivatives against Gram-positive (Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The derivatives, 2-(3-m-toluyl-1,2,4-oxadiazol-5-yl)-3,4-(methylenedioxy)-cinnamyl and 2-(3-pyrimidyl-1,2,4-oxadiazol-5-yl)-3,4-(methylenedioxy)-cinnamyl exhibited a minimum inhibitory concentration (MIC) of 19.5 μg mL−1 against S. aureus, and is four-fold more potent than the standard metronidazole (MIC =78 μg mL−1).
Downloads
References
Andrade, D., Freitas Filho, J. R., & Freitas, J. C. R. (2016). Aplicação de amidoximas como catalisadores da reação de alilação por aliltrifluoroborato de potássio em meio bifásico. Química Nova, 39(10), 1225-1235. http://dx.doi.org/10.21577/0100-4042.20160158
Baral, N., Mohapatra, S., Raiguru, B. P., Mishra, N. P., Panda, P., Nayak, S., Pandey, S. K., Kumar, P. S., &Sahoo, C. R.J. (2019). Microwave-Assisted Rapid and Efficient Synthesis of New Series of Chromene-Based 1,2,4-Oxadiazole Derivatives and Evaluation of Antibacterial Activity with Molecular Docking Investigation. Heterocyclic Chem, 56, 552-565. https://doi.org/10.1002/jhet.3773
Bezerra, N. M. M., De Oliveira, S. P., Srivastava, R. M., &da Silva, J. R. (2005). An easy synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from carboxylic acids and arylamidoximes mediated by ethyl chloroformate. II Farmaco, 60, 955. http://dx.doi.org/10.1016/j.farmac.2005.08.003
Biernacki, K., Dásko, M., Ciupak, O., Kubinsk, K. Rachon, J., Demkowicz, S. (2020). Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals, 13(6), 1-45. https://doi.org/10.3390/ph13060111
Bora, R. O., Dar, B., Pradhan, V., & Farooqui, M. (2014). 1, 2, 4-oxadiazoles: synthesis and biological applications. Mini-reviews in Medicinal Chemistry, 14(4), 355-369. doi: 10.2174 / 1389557514666140329200745
Brotschi, C., Roch, C., Gatfield, J., Treiber, A., Williams, J. T., Sifferlen, T., Heidmann, B., Jenck, F., Bolli, M. H., &Boss, C. (2019). Oxadiazole Derivatives as Dual Orexin Receptor Antagonists: Synthesis, Structure-Activity Relationships, and Sleep-Promoting Properties in Rats. ChemMedChem, 14, 1257-1270, doi:10.1002/cmdc.201900242.
Chernyshov, V. V., Yarovaya, O. I., Esaulkova, I. L., Sinegubova, E. Borisevich, S. S., Popadyuk, I. I., Zarubaev, V. V., &Salakhutdinov, N. F. (2022). Novel O-acylated amidoximes and substituted 1,2,4-oxadiazoles synthesised from (+)-ketopinic acid possessing potent virus-inhibiting activity against phylogenetically distinct influenza A viruses. Bioorganic & Medicinal Chemistry Letters, 1(55), 128465. doi: 10.1016/j.bmcl.2021.128465. Epub 2021 Nov 19. PMID: 34808389
Clinical and Laboratory Standards Institute. (2010). Performance standards for antimicrobial susceptibility testing, Document M100-S20, 2010. Wayne, PA.
De Vita, D., Friggeri, L., D'Auria, F. D., Pandolfi, F., Piccoli, F., Panella, S., Palamara, A. T., Simonetti, G., Scipione, L., Di Santo, R., Costi, R., & Tortorella, S. (2014). Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorganic & medicinal chemistry letters, 24(6), 1502-1505. https://doi.org/10.1016/j.bmcl.2014.02.005
Debnath, B., Samanta, S., Roy, K., & Jha, T. (2003). QSAR study on some p-arylthio cinnamides as antagonists of biochemical ICAM-1/LFA-1 interaction and ICAM-1/JY-8 cell adhesion in relation to anti-inflammatory activity. Bioorganic & medicinal chemistry, 11(8), 1615-1619. https://doi.org/10.1016/s0968-0896(03)00085-3
Espinel-Ingroff, A., Fothergill, A., Ghannoum, M., Manavathu, E., Ostrosky-Zeichner, L., Pfaller, M., Rinaldi, M., Schell, W., & Walsh, T. (2005). Quality Control and Reference Guidelines for CLSI Broth Microdilution Susceptibility Method (M38-A Document) for Amphotericin B, Itraconazole, Posaconazole, and Voriconazole. Journal of Clinical Microbiology, 43(10), 5243-5246. https://doi.org/10.1128/JCM.43.10.5243-5246.2005
Farooqui, M., Bora, R., &Patil, C. R. (2009). Synthesis, analgesic and anti-inflammatory activities of novel 3-(4-acetamido-benzyl)-5-substituted-1,2,4-oxadiazoles. European Journal of Medicinal Chemistry, 44(2), 794-799. doi: 10.1016/j.ejmech.2008.05.022
Gobec, M., Tomašič, T., Markovič, T., Mlinarič-Raščan, I., Dolenc, M. S., Jakopin, Ž. (2015). Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol. Chemico-Biological Interactions, 240, 200-207. doi: 10.1016/j.cbi.2015.08.018
Haugwitz, R.D., Martinez, A. J., Venslavsky, J., Angel, R. G., Maurer, B. V., Jacobs, G. A., Narayanan, V. L., Cruthers, L. R., &Szanto, J. (1985). Antiparasitic agents. 6. Synthesis and anthelmintic activities of novel isothiocyanatophenyl-1,2,4-oxadiazoles. J Med Chem, 28(9), 1234-41. doi: 10.1021/jm00147a019
Ibrahim, T. S., Almalki, A. J., Moustafa, A. H., Allam R. M., Abuo-Rahma, G. E-D. A., El Subbagh, H. I., &Mohamed, M. F. A. (2011). Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: Design, synthesis, ADMET prediction and molecular docking study. Bioorganic Chemistry, 111, 104885. https://doi.org/10.1016/j.bioorg.2021.104885
Kumar, D., Patel, G., Chavers, A. K., Chang, K.-H., &Shah, K. (2011). Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents. European Journal of Medicinal Chemistry. 46(7), 3085-3092.http://dx.doi.org/10.1016/j.ejmech.2011.03.031
Lima, J. A. C., Costa, E. C.S., Bezerra, G. B., Silva, J. F., Rodrigo Caina, R. A., de Freitas Filho, J. R., & Freitas, J. C. R. (2020) Synthesis, antimicrobial activity, and in silico studies of 1,2,4-oxadiazoles from ethyl levulinate. Acta Brasiliensis, 4(3), 161-167. DOI: https://doi.org/10.22571/2526-4338390
Liu, Q., Zhu, R., Gao, S., Ma, S.-H., Tang, H.-J., Yang, J.-J., Diao, Y.-M., Wang, H.-L. and Zhu, H.-J. (2017), Structure-based bioisosterism design, synthesis, insecticidal activity and structure-activity relationship (SAR) of anthranilic diamide analogues containing 1,2,4-oxadiazole rings. Pest Management Science, 73, 917-924. https://doi.org/10.1002/ps.4363
Maftei, C. V., Fodor, E., Jones, P. G., Franz, M. H., Kelter, G., Fiebig, H., &Neda, I. (2013). Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein Journal of Organic Chemistry, 9, 2202-2215. https://doi.org/10.3762/bjoc.9.259.
Mohammadi-Khanaposhtani, M, Shabani, M., Faizi, M., &Aghaei, I. (2016). Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents. European Journal of Medicinal Chemistry, 112, 91-98. http://dx.doi.org/ 10.1016/j.ejmech.2016.01.054.
Moniot, S., Forgione, M., Lucidi, A., Hailu, G. S., Nebbioso, A., Carafa, V., Baratta, F., Altucci, L., Giacché, N., Passeri, D., Pellicciari, R., Mai, A., Steegborn, C., &Dante Rotili, D. (2017). Development of 1,2,4-oxadiazoles as potent and selective inhibitors of the human deacetylase sirtuin 2: structure-activity relationship, X-ray crystal structure, and anticancer activity, Journal of Medicinal Chemistry, 60(6), 2344-2360. http://dx.doi.org/10.1021/acs.jmedchem.6b01609.
Morales, G., Paredes, A., Sierra, P., &Loyola, L.A. (2008). Antimicrobial Activity of Three Baccharis Species Used in the Traditional Medicine of Northern Chile. Molecules, 13, 790-94. https://doi.org/10.3390/molecules13040790
Ölmez, N. A., & Waseer, F. (2020). New Potential Biologically Active Compounds: Synthesis and Characterization of Urea and Thiourea Derivativpes Bearing 1,2,4-oxadiazole Ring. Current organic synthesis, 17(7), 525-534. https://doi.org/10.2174/1570179417666200417112106
Parrino, B., Carbone, D., Cascioferro, S., Pecoraro, C., Giovannetti, E., Deng, D., Di Sarno, V., Musella, S., Auriemma, G., Cusimano, M. G., Schillaci, D., Cirrincione, G., & Diana, P. (2021). 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. European journal of medicinal chemistry, 209, 112892. https://doi.org/10.1016/j.ejmech.2020.112892
Puzanov, A. I., Ryabukhin, D. S., Zalivatskaya, A. S., Zakusilo, D. N., Mikson, D. S., Boyarskaya, I. A., &Vasilyev, A. V. (2021). Synthesis of 5-arylacetylenyl-1,2,4-oxadiazoles and their transformations under superelectrophilic activation conditions. Beilstein Journal of Organic Chemistry. 17, 2417-2424. https://doi.org/10.3762/bjoc.17.158
Rodrigues, M. P., Tomaz, D. C., Ângelo de Souza, L., Onofre, T. S., Aquiles de Menezes, W., Almeida-Silva, J., Suarez-Fontes, A. M., Rogéria de Almeida, M., Manoel da Silva, A., &Bressan, G. C., André Nanner-Santos, M., Lopes Rangel Fietto, J. & Ricardo Teixeira, R. (2019). Synthesis of Cinnamic Acid Derivatives and Leishmanicidal Activity against Leishmania Braziliensis. European Journal of Medicinal Chemistry, 183, 111688. https://doi.org/10.1016/j.ejmech.2019.111688
Ruwizhi, N., &Aderibigbe, B. A. (2020). Cinnamic Acid Derivatives and Their Biological Efficacy. International Journal of Molecular Sciences, 21, E5712. DOI: 10.3390/ijms21165712
Sova, M. (2012). Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini reviews in medicinal chemistry, 12(8), 749-767. https://doi.org/10.2174/138955712801264792
Sortino, M., Cechinel Filho, V., Corrêa, R., &Zacchino, S. (2008). N-Phenyl and N-phenylalkyl-maleimides acting against Candida spp.: Time-to-kill, stability, interaction with maleamic acids. Bioorganic & Medicinal Chemistry Letters, 16, 560-568. https://doi.org 10.1016/j.bmc.2007.08.030
Srivastava, R. M., Pereira, M. C., Faustino, W. W. M., Coutinho, K., Anjos, J. V., &Melo, S. J (2009). Synthesis, mechanism of formation, and molecular orbital calculations of arylamidoximes. Monatshefte fuer Chemie/Chemical Monthly, 140(11), 1319-1324. DOI:10.1007/s00706-009-0186-7
Vinaya, K., Chandrashekara, G. K.,&Shivaramu, P. D. (2019). One-pot synthesis of 3,5-diaryl substituted-1,2,4-oxadiazoles using gem-dibromomethylarenes. Canadian Journal of Chemistry, 97(9), 690-696. https://doi.org/10.1139/cjc-2018-0333
Voisin-Chiret, A. S., Bazin, M. A., Lancelot, J. C., & Rault, S. (2007). Synthesis of new L-ascorbic ferulic acid hybrids. Molecules (Basel, Switzerland), 12(11), 2533-2545. https://doi.org/10.3390/12112533
Yang, Sen, Chao-Li Ren, Tian-Yang Ma, Wen-Qian Zou, Li Dai, Xiao-Yu Tian, Xing-Hai Liu, &Cheng-Xia Tan. (2021). 1,2,4-Oxadiazole-Based Bio-Isosteres of Benzamides: Synthesis, Biological Activity and Toxicity to Zebrafish Embryo. International Journal of Molecular Sciences 22(5): 2367. https://doi.org/10.3390/ijms22052367
Yilmaz, S., Sova, M., &Ergün, S. (2018) Antimicrobial Activity of Trans-Cinnamic Acid and Commonly Used Antibiotics against Important Fish Pathogens and Nonpathogenic Isolates. Journal of Applied Microbiology, 125, 1714-1727. https://doi.org/10.1111/jam.14097
Zhang, B., Lv, C., Li, W., Cui, Z., Chen, D., Cao, F., Miao, F., & Zhou, L. (2015). Ethyl cinnamate derivatives as promising high-efficient acaricides against Psoroptes cuniculi: synthesis, bioactivity and structure-activity relationship. Chemical & pharmaceutical bulletin, 63(4), 255-262. https://doi.org/10.1248/cpb.c14-00765