Antagonism of Trichoderma on the control of Fusarium spp. on Phaseolus lunatus L.

Abstract

Biological control strategies have become an important tool in the sustainable management of plant diseases. This paper aims to report the Fusarium species that affect fava beans (Phaseolus lunatus L.) grown in Paraíba, Brazil, and determines the potential of Trichoderma isolates to control these fungi. Two Trichoderma and ten Fusarium isolates from fava bean seeds were selected. The beans were obtained from cultivated areas in the municipalities of Remígio, Alagoa Grande and Campina Grande, in Paraíba state. Phylogenetic analyzes based on DNA sequences of the translation elongation factor 1-α (TEF1) gene resolved the Fusarium isolates into four species belonging to the F. fujikuroi and F. incarnatum-equiseti species complexes. In vitro tests showed that the two isolates of Trichoderma tested presented antagonistic potential against the pathogens from the fava beans evaluated. In the direct comparison test, the growth of the pathogens was reduced from the seventh day in both treatments. Sporulation also showed a reduction, but only for 40% of Fusarium isolates. This work demonstrates that Trichoderma isolates can be used as a sustainable alternative to manage Fusarium spp. infection of fava beans.

Downloads

Download data is not yet available.

References

Alfenas, A.C., & Mafia, R.G. (2016). Métodos em Fitopatologia. (2a ed). – Viçosa (MG): Ed. UFV.
Avila, C. F., Moreira, G. M., Nicolli, C. P., Gomes, L. B., Abreu, L. M., Pfenning, L. H., et al. (2019). Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. International Journal of Food Microbiology, 306. doi: 10.1016/j.ijfoodmicro.2019.108267
Benítez, T., Rincón, A.M., Limón, M.C. & Codón, A.C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249-260. doi: 10.4172/2169-0111.1000e110
Bell, D.K., Wells, H.D., & Markham, C.R. (1982) In vitro antagonismo of Trichoderma species against six fungal plant pathogens. Phytopathology 72(4), 379-382. doi: 10.1094/phyto-72-379
Bickford, D., Lohman, D.J., Sodhi, N.S., NG, P.K., Meier, R., Winker, K., Ingram K. K., & Indraneil D. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148-155. doi: 10.1016/j.tree.2006.11.004
Bhattacharryya, P.N., Goswami, M.P., Bhattacharyya, L.H. (2016). Perspective of beneficial microbes in agriculture under changing climatic scenario: A review. Journal of Phytology, 8, 26-41. doi: 10.19071/jp.2016.v8.3022
Boughalleb-M’Hamdi, N., Salem, I. B. & M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1). doi: 10.1186/s41938-017-0010-3
Carvalho, D.D.C., Mello, S.C.M., Júnior, M.L. & Silva, M.C. (2011). Controle de Fusarium oxysporum f.sp.phaseoli in vitro e em sementes, e promoção do crescimento inicial do feijoeiro comum por Trichoderma harzianum. Tropical Plant Pathology, 36(1), 28-34. doi: 10.1590/s1982-56762011000100004
Carreras-villaseñor, N.; Sánchez-Arreguín, J.A. & Herrera Estrella, A.H. (2012). Trichoderma: sensing the environment for survival and dispersal. Microbiology, 158 (1), 3-16. doi: 10.1099/mic.0.052688-0
Choi, Jung-Hye, Lee, S., Nah, Ju-Young, Kim, Hee-Kyoung, Paek, Ji-Seon, et al. (2018) Species composition of and fumosin production by the Fusarium fujikuroi species complex isolated from Korean cereals. International Journal of Food Microbiology, 267, 62-69. doi: 10.1016/j.ijfoodmicro.2017.12.006
Gomes, R.S.S., Nunes, M.C., Nascimento, L.C., Souza, J.O., Porcino, M.M. (2016). Óleos essenciais na qualidade sanitária e fisiológica em sementes de feijão-fava (Phaseolus lunatus L.). Revista Brasileira de Plantas Medicinais, 18(1), 279-287. doi: 10.1590/1983-084x/15_117
Gomes, R.S.S., Nascimento, L.C. (2018) Induction of resistance to Colletotrichum truncatum in lima bean. Arquivos do Instituto Biológico, 85, 1-7. doi: 10.1590/1808-1657000022018
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2(1), 43–56. doi: 10.1038/nrmicro797
Hermosa, R., Viterbo, A., Chet, I. & Monte, E. (2011). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17–25. doi: 10.1099/mic.0.052274-0
Huang, M., Hull, C.M. 2017). Sporulation: how to survive on planet Earth (and beyond). Current Genetics, 63, 831–838. doi: 10.1007/s00294-017-0694-7
Jana, C.S., Mandal, M. (2017). Antagonistic effect of Trichoderma isolates on Sclerotium rolfsii. Journal of Experimental Biology and Agricultural Sciences, 5(4), 506-514. doi: 10.18006/2017.5(4).506.514
Katoh, K., Rozewicki, J., & Yamada, K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166. doi: 10.1093/bib/bbx108
Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual. Blackwell Publishing.
Lima, E. N., Oster, A. H., do Nascimento Bordallo, P., de Araújo, A. A. C., da Silva, D. E. M., & Lima, C. S. (2020). A novel lineage in the Fusarium incarnatum‐equiseti species complex is one of the causal agents of Fusarium rot on melon fruits in northeast Brazil. Plant Pathology. doi: 10.1111/ppa.13271
López-Bucio, J., Pelagio-Flores, R. & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109–123. doi: 10.1016/j.scienta.2015.08.043
Miller, M.A., Pfeiffer, W. & Schwartz, T. (2012). The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond, 1-8. Association for Computing Machinery, USA.
Mousumi Das, M.; Haridas M.; Sabu, A. (2019). Biological control of black pepper and ginger pathogens, Fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatalysis and Agricultural Biotechnology, 17, 177-183. https://doi.org/10.1016/j.bcab.2018.11.021
Mota, J.M., Melo, M.P., Silva, F.F.S., Sousa, E.M.J., Sousa, E.S., Barguil, B.M. et al. (2017). Fungal diversity in Lima Bean seeds. Brazilian Journal of Biosystems Engineering, 11(1), 79-87. doi: 10.18011/bioeng2017v11n1p79-87
Nascimento, L.C., Medeiros, J.G.F. (2015). Patologia das sementes: noções básicas. João Pessoa: Editora da UFPB.
O’Donnell, K., Kistler, H.C., Cigelnik, E., Ploetz, R.C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95:2044–2049.
O’Donnell, K., Sutton, D. A., Rinaldi, M. G., Gueidan, C., Crous, P. W., & Geiser, D. M. (2009). Novel Multilocus Sequence Typing Scheme Reveals High Genetic Diversity of Human Pathogenic Members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. Journal of Clinical Microbiology, 47(12), 3851–3861. doi: 10.1128/jcm.01616-09
O’Donnell, K., Ward, T.J., Varg, R., Crous, P.W., Geiser, D.M., Kang, S. (2015). DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica, 43(5), 583–595. doi: 10.1007/s12600-015-0484-z
Oliveira, J. A. (1991). Efeito do tratamento fungicida em sementes no controle de tombamento de plântulas de pepino (Cucumis sativus L.) e pimentão (Capsicum annum L.). Lavras, MG. 1991. 111 p. Dissertação (Mestrado em Fitossanidade) -Universidade Federal de Lavras, Lavras, MG.
Reino J.L., Guerrero R.F., Hernández-Galán R. & Collado I.G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123. doi: 10.1007/s11101-006-9032-2
Rodrigues, G.S., Magalhães, D.M.A., Costa, A.M. & Luz, E.D.M.N. (2018). Antagonismo de Trichoderma spp. ao agente etiológico da Murcha de Ceratocystis em cacaueiro. Summa Phytopathologica, 44(1), 72-78. doi: 10.1590/0100-5405/172774
Santos, J. O. (2008). Divergência genética em feijão-fava (Phaseolus lunatus L.). – Universidade Federal do Piauí, Teresina, 2008. 97p. Dissertação, Teresina.
Sadowski, S. (1988). Occurrence of broad bean (Vicia faba L.) diseases in Olsztyn-Elb ag and Bydgoszcz Provinces. Acta Agrobotanica. 41(2), 245–255. doi: 10.5586/aa.1988.014
Santos, A.C.S., Trindade, J.V.C., Lima, C.S., Barbosa, R.D.N., Costa, A. F., Carneiro-Leão M. P. & Tiago P. V., (2019). Morphology, phylogeny, and sexual stage of Fusarium caatingaense and Fusarium pernambucanum, new species of the Fusarium incarnatum-equiseti species complex associated with insects in Brazil. Mycologia, 111(2), 244-259. doi: 10.1080/00275514.2019.1573047
Silva-Flávio, N. S. D. S., Sales, N.L.P., Aquino, C.F., Soares, E.P.C., Aquino, L.F.S. &. Catão H. C. R. M (2014). Qualidade sanitária e fisiológica de sementes de sorgo tratadas com extratos aquosos e óleos essenciais. Semina: Ciências Agrárias, 35(1), 7-20. doi: 10.5433/1679-0359.2014v35n1p7
Sousa, M.J.O., Almeida, F.A., Leite, M.L.T., Fonseca, W.L.F., Lopes, K.P., Gomes C. D. L., Sampaio E. G., Santos E. da N. & Gondim A. R. de O. (2020). Biocidal potential of some organic by-products on sanitary and physiological quality of red and white fava beans seeds. Australian Journal of Crop Science, 14(3), 462-468. doi: 10.21475/ajcs.20.14.03.p1997
Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M. et al. (2020). Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants, 9(6), 762. doi: 10.3390/plants9060762
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. doi: 10.1093/bioinformatics/btu033
Summerell, B. A., Leslie, J. F. (2011). Fifty years of Fusarium: how could nine species have ever been enough? Fungal Diversity, 50(1), 135-144. doi: 10.1007/s13225-011-0132-y
Summerell, B. A. (2019). Resolving Fusarium: Current status of the genus. Annual Review of Phytopathology, 57(1), 323-339. doi: 10.1146/annurev-phyto-082718-100204
Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Wooa, S.L., Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology & Biochemistry, 40(1), 1-10. doi: 10.1016/j.soilbio.2007.07.002
Xia, J.W., Sandoval-Denis, M., Crous, P.W., Zhang, X.G. and Lombard, L. (2019). Numbers to names–restyling the Fusarium incarnatum-equiseti species complex. Persoonia: Molecular Phylogeny and Evolution of Fungi, 43(1), 186-221. doi: 10.3767/persoonia.2019.43.05
Watson, A., Burgess, L. W., Summerell, B. A., & O’keeffe, K. (2014). Fusarium species associated with cob rot of sweet corn and maize in New South Wales. Australasian Plant Disease Notes, 9(1). doi: 10.1007/s13314-014-0142-1
Zivkovic, S., Stojanovic, S., Ivanovic, Z., Gavrilovic, V. & Popovic, T. (2010). Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Archive of Biological Science, 62 (3), 611-623. doi: 10.2298/abs1003611z
Zhang, J., Chen, G.-Y., Li, X.-Z., Hu, M., Wang, B.-Y., Ruan, B.-H. Hao Z., Li-Xing Z., Zhou J., Ding, Z. & Yang,. (2017). Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Natural Product Research, 31(23), 2745–2752. doi: 10.1080/14786419.2017.1295235
Published
2021-05-27
How to Cite
BARRETO, Gabriel Ginane et al. Antagonism of Trichoderma on the control of Fusarium spp. on Phaseolus lunatus L.. Acta Brasiliensis, [S.l.], v. 5, n. 2, p. 57-64, may 2021. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/516>. Date accessed: 29 mar. 2024. doi: https://doi.org/10.22571/2526-4338516.
Section
Microbiology