Plant growth-promoting activity in bean plants of endophytic bacteria isolated from Echeveria laui

Abstract

Echeveria laui (Crassulaceae) is commonly commercialized due to its drought-tolerance capacity and to its rosette-shaped aesthetics. Since endophytes associated with plants from a dry or arid environment have scarcely been analyzed as yet, current research comprises the isolation of leaf endophytic bacteria from E. laui (one five-year-old and one two-year-old plants) investigating plant growth-promoting endophytic bacteria which may solubilize phosphate, fix nitrogen, produce exopolysaccharides/IAA and antagonize phytopathogens. Isolation by the maceration methodology provided a colonization rate of 1.98 x109 CFU g-1 for the two-year-old plant and 1.14 x 1010 CFU g-1 for the five-year-old one. All 40 isolates evaluated showed in vitro plant growth-promoting agent’s abilities, with emphasis on EG04, ELG18, and ELP06.  The capacity of the three best bacterial isolates were evaluated under greenhouse conditions in common and black bean (Phaseolus vulgaris L.) plants. Based on the sequencing of the 16S rRNA region and phylogenetic analysis, the three endophytes were identified as Pantoea sp. (ELG04 and ELG18) and Erwinia sp. (ELP06). Under greenhouse conditions, statistically significant differences were found among the plants treated with the three endophytes when compared to control plants for fresh and dry shoot, root biomass and length.

Downloads

Download data is not yet available.

References

Abreu, C.S., Figueiredo, J.E.F., Oliveira, C.A., Dos Santos, V.L., Gomes, E.A., Ribeiro, V.P., Barros, B.A., Lana, U.G.P., & Marriel, I.E. (2017). Maize endophytic bacteria as mineral phosphate solubilizers. Genetics and Molecular Research, 16(1), 1-13. doi: 10.4238/gmr16019294.
Adhikari, P., & Pandey, A. (2019). Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere, 9, 02-09. doi: 10.1016/j.rhisph.2018.11.002.
Bezerra, J.D., Azevedo, J.L., & Souza-Motta, M.C. (2017). Why study endophytic fungal comunity associated with Cacti species?. In: Azevedo, J.L., & Quecine, M.C. (Eds). Diversity and benefits of microorganisms from the tropics. Springer, p.21-36. doi: 10.1007/978-3-319-55804-2_2.
Breda, F.A.F., Alves, G.C., & Reis, V.M. (2016). Productivity of mize in the presence of nitrogen levels and inoculation with Herbaspirillum seropedice. Pesquisa Agropecuária Brasileira, 51(1), 45-52. doi: 10.1590/S0100-204X2016000100006.
Chen, C., Xin, K., Liu, H., Cheng, J., Shen, X., Wang, Y., & Zhang, L. (2017). Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Scientific Reports, 7,41564. doi: 10.1038/srep41564.
Collavino, M.M., Sansberro, P.A., Mroginski, L.A., & Aguilar, O.M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility Soils, 46, 727-738. doi: doi: 10.1007/s00374-010-0480-x.
Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S.,Dupont, J., Profizi, C., & Baillieu, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research, 202, 11-20. doi: 10.1016/j.micres.2017.04.014.
Godeau, G., Laugier, J.P., Orange, F., Godeau, R.P., Guittard, F., & Darmanin, T. (2017). A travel in the Echeveria genus wettability's world. Applied Surface Science, 411, 291-302. doi: doi: 10.1016/j.apsusc.2017.03.192.
Guo, L.D., Huang, G.R., & Wang, Y. (2008). Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. Journal of Integrative Plant Biology, 50(8), 997-1003. doi: 10.1111/j.1744-7909.2008.00394.x.
Herrera, S.D., Grossi, C., Zawoznik, M., & Groppa, M.D. (2016). Wheat seeds harbour bacterial endophytes with potential as plantgrowth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 187, 37-43. doi: 10.1016/j.micres.2016.03.002.
Jo, H., Jang, M., Hong, J.K., & Parque, C.J. (2018). First report of fungal leaf spot in Echeveria spp. caused by Cladosporium tenuissimum in Korea. Plant Desease, 102 (7), 1450. doi: 10.1094/PDIS-08-17-1277-PDN.
Kavamura, V.N., Santos, S.N., Silva, J.L., Parma, M.M., Ávilla, L.A., Visconti, A., Zucchi, T.D., Taketani, R.G., Andreote, F.D., & Melo, I.S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168(4), 183-191. doi: 10.1016/j.micres.2012.12.002.
López-Ângulo, G., Montes-Avila, J., Díaz-Camacho, S.P., Veja-Aviña, R., Báez-Flores, M.H, & Delgardo-Vargas, F. (2016). Bioactive components and antimutagenic and antioxidant activities of two Echeveria DC. species. Industrial Crops and Products, 85, 38-48. doi: 10.1016/j.indcrop.2016.02.044.
López-Gonzáles, R.C., Gómez-Cornelio, S., La Rosa-García, S.C., Garrido, E., Oropeza-Mariano, O., Heil, M., & Partida-Martínez, L.P. (2017). The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against. Colletotrichum lindemuthianum. Fungal Ecology, 26, 1–10. doi: 10.1016/j.funeco.2016.11.004.
Ma, Y., Oliveira, R.S., Nai, F., Rajkamar, M., Luo, Y., Rocha, I., & Freitas, H. (2015). The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management, 156, 62-69. doi: 10.1016/j.jenvman.2015.03.024.
Mishra, A., Chauhan, P.S., Chaudhry, V., Tripathi, M., & Nautiyal, C.S. (2011). Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek, 100, 405–413. doi: 10.1007/s10482-011-9596-8.
Neetha, J.N., Sandesh, K., Kumar, K.G.., Chidamamda, B., & Ujwal, P. (2019). Optimization of Direct Blue-14 dye degradation by Bacillus fermus (Kx898362) an alkaliphilic plant endophyte and assessment of degraded metabolite toxicity. Journal of Hazardous Materials, 364, 742-751. doi: 10.1016/j.jhazmat.2018.10.074.
Niknezhad, S.V., Morowvat, M.H., Darz, G.N., Iraji, A., & Ghasemi, Y. (2018). Exopolysaccharide from Pantoea sp. BCCS 001 GH isolated from nectarine fruit: production in submerged culture and preliminary physicochemical characterizations. Food Science and Biotechnology, 27(6), 1735–1746. doi: 10.1007/s10068-018-0409-y.
Oliveira, J.A., Polli, A.D., Polonio, J.C., Orlandelli, R.C., Conte, H., Azevedo, J.L., & Pamphile, J.A. (2020). Bioprospection and molecular phylogeny of culturable endophytic fungi associated with yellow passion fruit. Acta Scientiarum Biological Sciences, 42, 1-11. doi: 10.4025/actascibiolsci.v42i1.48321.
Sánchez-Cruz, R., Vázquez, I.T., Batista-Garcia, R.A., Méndez-Santiago, E.W., Sánchez-Carbente, M.R., Leija, A., Lira-Ruan, V. Hernández, G., Wong-Villarreal, A., & Folch-Mallol, L. (2019). Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiological Research, 218, 76-86. doi: 10.1016/j.micres.2018.09.008.
Sergeeva, E., Hirkala, D.L.M., & Nelson, L.M. (2007). Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil, 297, 1-13. doi: 10.1007/s11104-007-9314-5.
Silini-Chérif, H., Silini, A., Ghoul, M., & Yadav, S. (2012). Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans lma2. Pakistan Journal of Biological Sciences, 15(6), 267-276. doi: 10.3923/pjbs.2012.267.276.
Stevens, J.F., Hart, H., Ham, R.C.H.J., Elema, E.T, Van Den Ent, M.M.V.X., Wildeboer, M., & Zwaving, J.H. (1995). Distribution of Alkaloids and Tannins in the Crassulaceae. Biochemical Systematics and Ecology, 23(2), 157-165. doi: 10.1016/0305-1978(95)00082-6.
Walterson, A.M., & Stavrinides, J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews, 39(6), 968-984. doi: 10.1093/femsre/fuv027.
Published
2021-05-27
How to Cite
EMMER, Anderson et al. Plant growth-promoting activity in bean plants of endophytic bacteria isolated from Echeveria laui. Acta Brasiliensis, [S.l.], v. 5, n. 2, p. 65-71, may 2021. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/actabra/index.php/actabra/article/view/496>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.22571/2526-4338496.
Section
Microbiology