Synthesis, antimicrobial activity and silicon study of 1,2,4-oxadiazoles derived from of ethyl levulinate

Abstract

This study describes the synthesis, antimicrobial activity, and in silico assessment of 1,2,4-oxadiazoles from ethyl levulinate. For that, we prepared arylamidoximes and treated them with ethyl levulinate, obtaining the respective 1,2,4-oxadiazoles through a reaction sequence of O-acylation followed by cyclodehydration. Then, we assessed the antimicrobial activity of these compounds against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida utilis using the broth microdilution technique. We analyzed in silico studies using the online bioinformatics platforms SwissADME and PASS. We obtained arylamidoximes and 1,2,4-oxadiazoles in good yields. The 1,2,4-oxadiazoles showed moderate antimicrobial activity, inhibiting two microorganisms: the bacterium P. aeruginosa and the fungus C. utilis.  In silico studies of 1,2,4-oxadiazoles have shown promising properties, such as good oral absorption, low probability of toxicity, good body distribution, and potential to develop metabolic and enzymatic activities. The investigation of the antimicrobial activity together with the in silico studies showed that the synthesized 1,2,4-oxadiazoles are promising structures for the development of new therapeutic agents.

Downloads

Download data is not yet available.

References

Anderson, K., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D. W. & Wassell, D. (2013). Removal of naphthenic acids from crude oil using amino acid ionic liquids. Fuel, 108, 715-722. doi: 10.1016/j.fuel.2013.02.030

Azad, F. S., Abedi, J. & Iranmanesh, S. (2013). Removal of naphthenic acids using adsorption process and the effect of the addition of salt. Journal of Environmental Science and Health Part A, 48(13), 1649-1654. doi: 10.1080/10934529.2013.815457

Benally, C., Messele, S. A. & El-Din, M. G. (2019). Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. Water research, 154, 402-411. doi: 10.1016/j.watres.2019.01.053

Bussmeyer,E. C., & Henkes, J. A. (2015). Gestão ambiental na indústria do petróleo: sistema de gestão ambiental nas sondas de perfuração. Revista Gestão & Sustentabilidade Ambiental 3(2), 396-462.

Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis. (2016). PETROBRAS. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). Bussmeyer, E. C. (2015). Gestão ambiental na indústria do petróleo: sistema de gestão ambiental nas sondas de perfuração. Revista Gestão e Sustentabilidade Ambiental, 3(2), 396 -462. doi: 10.19177/rgsa.v3e22014396-462

Frank, R. A, Fischer, K., Kavanagh, R., Burnison, K., Arsenault, G., Headley, J. V., Peru, K. M., Van der Kraak, G. & Solomon, K. R. (2009). Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environmental Science & Technology, 43(2), 266-271. doi: 10.1021/es8021057

Ghimire, N. & Wang, S. (2018). Biological Treatment of Petrochemical Wastewater. Petroleum Chemicals - Recent Insight. Intechopen, doi: 10.5772/intechopen.79655

Giles, C. H., Macewan, T. H., Nakhwa, S. N.& Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society (Resumed), 846, 3973–3993. doi: 10.1039/JR9600003973

Headley, J. V., Peru, K. M., Barrow, M. P. & Derrick, P. J. (2007). Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: the significant influence of solvents. Analytical Chemistry, 79(16), 6222-6229. doi: 10.1021/ac070905w

Ho, Y. S. & Mckay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. doi: 10.1016/S0032-9592(98)00112-5

Islam, M., McPhedran, K. N., Messele, S. A., Liu, Y. & El-Din, M. G. (2018). Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. Chemosphere, 202, 716-725. doi: https://doi.org/10.1016/j.chemosphere.2018.03.149

Jesus, F. A., Silva, J. V., Santos, T. M., Silva, M. S., Aragão, M. G. B. & Silva, G. F. (2019). An evaluation of different preparation methods of the M. Oleífera-based natural coagulating agent in the treatment of produced water from petroleum. Águas Subterrâneas, 33, 221-228. doi: 10.14295/ras.v33i2.29197

Khan, M. K., Riaz, A., Yi, M. & Kim, J. (2017). Removal of naphthenic acids from high acid crude via esterification with methanol. Fuel Process Technology, 165,123-130. doi: 10.1016/j.fuproc.2017.05.015

Martinez-Iglesias, A., Niasar, S. H., Xu, C. & Ray, B. M. (2015). Adsorption of Model Naphthenic Acids in Water with Granular Activated Carbon. Adsorption Science Technology, 33(10), 881-894. doi: 10.1260/0263-6174.33.10.881

Nasir Shah, S, Mutalib, M. I. A., Pilus, R. B. M. & Lethesh, K. C. (2014). Extraction of naphthenic acid from highly acidic oil using hydroxide-based ionic liquids. Energy Fuels, 29(1), 106-111. doi: 10.1021/ef502169q

Niasar, H. S., Li, H., Kasanneni, T. V. R., Ray, M. B. & Xu, C. C. (2016). Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water (OSPW). Chemical Engineering Journal, 293, 189-199. doi: 10.1016/j.cej.2016.02.062

Santaella, S.T., Silva, F.C.G., Costa, K.O., Aguiar, R., Arthaud, I.D.B., Leitão, R. C. (2009). Tratamento de efluentes de refinaria de petróleo em reatores com Aspergillus niger. Engenharia Sanitária Ambiental, 14(1): 139-148. doi: 10.1590/S1413-41522009000100015

Santo, C. (2010). A indústria de refinação de petróleo: características e tratamento das águas residuais. e-LP Engineering and Technology Journal, 1.

Varadaraj, R. & Brons, C. (2007). Molecular origins of heavy crude oil interfacial activity part 2: Fundamental interfacial properties of model naphthenic acids and naphthenic acids separated from heavy crude oils. Energy Fuels, 21(1), 199-204. doi: 10.1021/ef0604240

Wu, J., Montes, V., Virla, L. D. & Hill, J. M. (2018). Impacts of amount of chemical agent and addition of steam for activation of petroleum coke with KOH or NaOH. Fuel Processing Technology, 181, 53-60. doi: 10.1016/j.fuproc.2018.09.018

Yang, S., Wang, F., Tanga, Q., Wang, P., Xu, Z. & Liang, J. (2019). Utilization of ultralight carbon foams for the purification of emulsified oil wastewater and their adsorption kinetics. Chemical Physics, 516, 139-146. doi: 10.1016/j.chemphys.2018.08.051

Yassine, M. M. & Dabek-Zlotorzynska, E. (2017). Application of ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry for the characterization of organic aerosol: searching for naphthenic acids. Journal of Chromatography A, 1512, 22-33. doi: 10.1016/j.chroma.2017.06.067

Yu, L., Han, M. & He, F. (2017). A review of treating oily wastewater. Arabian Journal of Chemistry, 10, 1913-1922. doi: 10.1016/j.arabjc.2013.07.020

Andrade, D., Freitas Filho, J. R. & Freitas, J. C. R. (2016) Aplicação de amidoximas como catalisadores da reação de alilação por aliltrifluoroborato de potássio em meio bifásico. Química Nova, 39(10), 1225-1235. doi: 10.21577/0100-4042.20160158.

Barreiro, E. J. & Fraga, C. A. M. (2014) Química Medicinal: As bases moleculares da ação dos fármacos (3 ed.). Porto Alegre: Artmed.

Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I.H., Frearson, J. & Wyatt, P.G. (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. doi: 10.1002/cmdc.200700139

CDC. (2019) Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC.

Chaves, J. D. S., Tunes, L. G., Franco, C. H. D. J., Francisco, T. M., Corrêa, C. C., Murta, S. M., Monte-Neto, R. L., Silva, H., Fontes, A. P. S. & Almeida, M. V. (2017) Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. European Journal of Medicinal Chemistry, 127, 727-739. doi: 10.1016/j.ejmech.2016.10.052

Cunha, F.S., Nogueira, J. M. R. & Aguiar, A. P. (2018) Synthesis and Antibacterial Evaluation of 3,5-Diaryl-1,2,4-oxadiazole Derivatives. Journal of the Brazilian Chemical Society, 29(11), 2405-2416. doi: 10.21577/0103-5053.20180118

Daina, A., Michielin, O. & Zoete, V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. doi: 10.1038/srep42717

Espinel-ingroff, A., Fothergill, A., Ghannoum, M., Manavathu, E., Ostrosky-Zeichner, L., Pfaller, M., Rinaldi, M., Schell, W. & Walsh, T. (2005) Quality Control and Reference Guidelines for CLSI Broth Microdilution Susceptibility Method (M38-A Document) for Amphotericin B, Itraconazole, Posaconazole, and Voriconazole. Journal of Clinical Microbiology, 43(10), 5243-5246. doi: 10.1128/JCM.43.10.5243–5246

Faizi, M., Sheikhha, M., Ahangar, N., Ghomi, H.T., Shafaghi, B., Shafiee, A. & Tabatabai, A. S. (2012) Design, Synthesis and Pharmacological Evaluation of Novel 2-[2-(2-Chlorophenoxy) phenyl]-1,3,4-oxadiazole Derivatives as Benzodiazepine Receptor Agonists. Iranian Journal of Pharmaceutical Research, 11(1), 83–90. doi: 10.22037/IJPR.2012.1066

Freitas, J. J. R., Freitas, J. C. R., Silva, L. P., Freitas Filho, J. R. Kimuraa, G. Y. V., Srivastava, R. M.(2007) Microwave-induced one-pot synthesis of 4-[3-(aryl)-1,2,4-oxadiazol-5-yl]-butan-2-ones under solvent free conditions. Tetrahedron Letters, 48 (35), 6195–6198. doi: 10.1016/j.tetlet.2007.06.116

Freitas, J. J. R., Silva, E. E., Regueira, J. L. L. F., de Andrade, S. A., Calvalcante, P. M. M., Oliveira, R. N. & Freitas Filho, J. R. (2012) 1,2,4-Oxadiazóis: Síntese e aplicações. Revista Virtual Química, 4(6),670-691. doi: 10.5935/1984-6835.20120051

Golan, D. E., Tashjian Junior, A. H., Armstrong, E. J. & Armstrong, A. W. (2014) Princípios de farmacologia: a base fisiopatológica da farmacoterapia (3 ed.). Rio de Janeiro: Guanabara Koogan.

Krishna, C., Bhargavi, M. V., Rao, C. P. & Krupadanam, G. L. D. (2015) Synthesis and antimicrobial assesment of novel coumarins featuring 1,2,4-oxadiazole. Medicinal Chemistry Researach, 24(10), 3743-3751. doi: 10.1007/s00044-015-1399-4

Lee, H. & Lee, D. G. (2018) Novel Approach into Efficient Antifungal Drug Action. Journal of microbiology and biotechnology, 28(11), 1771-1781. doi: 10.4014/jmb.1807.07002

Leite, A. C. L., Vieira, R.F., Faria, A. R., Wanderley, A.G., Afiatpour, P., Ximenes, E. C. P. A., Srivastava, R.M., Oliveira, C.F., Medeiros, M.V., Antunes, E. & Brondani, D.J. (2000) Synthesis, anti-inflammatory and antimicrobial activities of new 1,2,4-oxadiazoles peptidomimetics. Il Farmaco, 55(11-12), 719-724. doi.org/10.1016/S0014-827X(00)00099-9

Lipinski, C. A. (2004) Lead and drug-like compounds: the rule-of-five revolution. Drug Discovery today: Technologies, 1(4), 337-341. doi: 10.1016/j.ddtec.2004.11.007

Morales, G., Paredes, A., Sierra, P. &Loyola, L. A. (2008) Antimicrobial activity of three baccharis species used in the traditional medicine of Northern Chile. Molecules, 13(4), 790-794. doi: 10.3390/molecules13040790

Oliveira, M. L. G. (2014) Avaliação in silico do potencial farmacológico e toxicológico de friedelanos, lupanos e derivados (Tese de doutorado). Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais.

Papa, E., Arnod, J A., Sangion, A. & Gramatica, P. (2017) In Silico Approaches for the Prediction of In Vivo Biotransformation Rates, In: ROY, K. Advances in QSAR Modeling. (1ed., Cap.11, pp. 425-451). Nova York: Springer International Publishing.

Prestinaci, F., Pezzotti, P. & Pantosti, A. (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309‐318. doi: 10.1179/2047773215Y.0000000030

Ranjan, C., Jagdish, K., Sharma, K., Akhter, M., Siddiqui, A.A. & Chawla, G. (2018) 1, 2, 4 Oxadiazole Incorporated Ketoprofen Analogues in Search of Safer Non-steroidal Anti-inflammatory Agents: Design, Syntheses, Biological Evaluation and Molecular Docking Studies. Letters in Drug Design & Discovery, 15(6),590-601. doi: 10.2174/1570180814666170810115134

Silva, D. F. (2016) Avaliação da atividade biológica do β-citroneol sobre Candida albicans (Dissertação de mestrado). Universidade Federal da Paraíba, João Pessoa, Paraíba.

Srivastava, R. M., Lima, A. A., Viana, O. S., Silva, M. J. C., Catanho, M. T. J. A. & Morais, J. O. F. (2003) Antiinflammatory Property of 3-Aryl-5-(n-propyl)-1,2,4-oxadiazoles and Antimicrobial Property of 3-Aryl-5-(n-propyl)-4,5-dihydro-1,2,4-oxadiazoles: Their Syntheses and Spectroscopic Studies. Bioorganic & Medicinal Chemistry, 11(8), 1821-1827. doi: 10.1016/s0968-0896(03)00035-x

Tarasenko, M., Duderin, N., Sharonova, T., Baykov, S., Shetnev, A. & Smirnov, A. V. (2017) Room-temperature synthesis of pharmaceutically important carboxylic acids bearing the 1,2,4-oxadiazole moiety. Tetrahedron Letters, 58(37), 3672-3677. doi: 10.1016/j.tetlet.2017.08.020

Zorzi, R. R. (2013) Planejamento, síntese e avaliação da atividade antimicrobiana de furfurilidênicos frente a micro-organismos causadores de infecções hospitalares (Dissertação de mestrado). Universidade de São Paulo, São Paulo, São Paulo.
Published
2020-09-28
How to Cite
DA CUNHA LIMA, Josefa Aqueline et al. Synthesis, antimicrobial activity and silicon study of 1,2,4-oxadiazoles derived from of ethyl levulinate. Acta Brasiliensis, [S.l.], v. 4, n. 3, p. 161-167, sep. 2020. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/390>. Date accessed: 28 mar. 2024. doi: https://doi.org/10.22571/2526-4338390.