Alkaline process evaluation for obtaining fungal chitosan

Abstract

Chitosan is a biopolymer with numerous applications in food, medical, pharmaceutical and environmental fields, and it can be obtained from chitin deacetylation present in fungal biomass. This study evaluated the fungal biomass deacetylation process with variations in sodium hydroxide solution concentrations, biomass proportions, process time and equipment. The fungal biomass was produced by Aspergillus niger fungus DAOM in potato dextrose broth medium via submerged bioprocesses. Deacetylation of the biomass was conducted using 4% (1:40 m v-1) NaOH solution in autoclave and 45% (1:20 m v-1) in stirred reactor. The degree of deacetylation for both techniques was similar (>60%). However, the autoclave process presented higher yield (14.29%). In addition, the functional groups presented similarities between the biopolymer samples, evidencing groups of hydroxyls, primary and secondary amines. Therefore, the process using 4% NaOH in autoclave contributed to minimize the negative environmental impacts of chitosan production.

Downloads

Download data is not yet available.

References

Abdel-Gawad, K. M., Hifney, A. F., Fawzy, M. A., & Gomaa, M. (2017). Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocolloids, 63, 593-601. doi: 10.1016/j.foodhyd.2016.10.001

Alsaggaf, M. S., Moussa, S. H., & Tayel, A. A. (2017). Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. International Journal of Biological Macromolecules, 99, 499-505. doi: 10.1016/j.ijbiomac.2017.03.017

Alsharari, S. F., Tayel, A. A., & Moussa, S.H. (2018). Soil emendation with nano-fungal chitosan for heavy metals biosorption. International Journal of Biological Macromolecules, 118, 2265-2268. doi: 10.1016/j.ijbiomac.2018.07.103

Colla, L. M., Ficanha, A. M. M., Rizzardi, J., Bertolin, T. E., Reinehr, C. O., & Costa, J. A. V. (2015). Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation. BioMed Research International, 2015, 1-9. doi: 10.1155/2015/725959

Bierhalz, A. C. K., Westin, C. B., & Moraes, A. M. (2016). Comparison of the properties of membranes produced with alginate and chitosan from mushroom and from shrimp. International Journal of Biological Macromolecules, 91, 496-504. doi: 10.1016/j.ijbiomac.2016.05.095

Feofilova, E.P., Nemtsev, D. V., Tereshina, V. M., & Memorskaya, A. S. (2006). Developmental Change of the Composition and Content of the Chitin–Glucan Complex in the Fungus Aspergillus niger. Applied Biochemistry and Microbiology, 42(6), 545-549. doi: 10.1134/S0003683806060032

Gomaa, M., Hifney, A. F., Fawzy, M. A., & Abdel-Gawad, K. M. (2018). Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocolloids, 82, 239-247. doi: 10.1016/j.foodhyd.2018.03.056

Hu, K-J., Hu, J-L., Ho, K-P., & Yeung, K-W. (2004). Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydrate Polymers, 58(1), 45-52. doi: 10.1016/j.carbpol.2004.06.015

Hussain, M. R., Iman, M., & Maji, T. K. (2014). Determination of Degree of Deacetylation of Chitosan and Their effect on the Release Behavior of Essential Oil from Chitosan and Chitosan-Gelatin Complex Microcapsules. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 37, 69-77.

Jiang, X., Chen, L., & Zhong, W. (2003). A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydrate Polymers, 54(4), 457-463. doi: 10.1016/j.carbpol.2003.05.004

Kim, S. K. (2010). Chitin, chitosan, oligosaccharides and their derivatives: Biological activities and applications. (1 ed.) Boca Raton, CRC Press, 672. Recuperado de: https://www.crcpress.com/Chitin-Chitosan-Oligosaccharides-and-Their-Derivatives-Biological-Activities/Kim/p/book/9781439816035

Maghsoodi, V., Razavi, J., & Yaghmaei, S. (2009). Production of Chitosan by Submerged Fermentation from Aspergillus niger. Scientia Iranica, Transaction C: Chemistry and Chemical Engineering, 16(2), 145-148. Recuperado de: http://scientiairanica.sharif.edu/article_3269.html

Moura, J. M., Farias, B. S., Rodrigues, D. A. S., Moura, C. M., Dotto, G. L., & Pinto, L. A. A. (2015). Preparation of chitosan with different characteristics and its application for biofilms production. Journal of Polymers and the Environment, 23(4), 470-477. doi: 10.1007/s10924-015-0730-y

Muñoz, G., Valencia, C., Valderruten, N., Ruiz-Durántez, E., & Zuluaga, F. (2015). Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. Reactive & Functional Polymers, 91-92, 1-10. doi: 10.1016/j.reactfunctpolym.2015.03.008

Namboodiri, M. M. T., & Pakshirajan, K. (2019). Sustainable and green approach of chitosan production from Penicillium citrinum biomass using industrial wastewater as a cheap substrate. Journal of Environmental Management, 240, 431-440. doi: 10.1016/j.jenvman.2019.03.085

Naghdi, M., Zamani, A., & Karimi, K. (2014). A sulfuric–lactic acid process for efficient purification of fungal chitosan with intact molecular weight. International Journal of Biological Macromolecules, 63, 158-162. doi: 10.1016/j.ijbiomac.2013.10.042

Rabey, H. A. E., Almutairi, F.M, Alalawy, A.I., Al-Duais, M. A., Sakran, M. I., Zidan, N. S., & Tayel, A. A. (2019). Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. International Journal of Biological Macromolecules, 141, 511-516. doi: 10.1016/j.ijbiomac.2019.09.036

Statsoft. (1999). Statistica for Windows. Version 8.0. [S.I.]: StatSoft South America. CD-ROM.
Tan, S. C., Khor, E., Tan, T. K., & Wong, S. M. (1998). The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta, 45(4), 713-719. doi: 10.1016/S0039-9140(97)00288-9

Tayel, A. A., Gharied, M. M., Zaki, H. R., & Elguindy, N. M. (2016). Bio-clarification of water from heavy metals and microbial effluence using fungal chitosan. International Journal of Biological Macromolecules, 83, 277-281. doi: 10.1016/j.ijbiomac.2015.11.072

Tayel, A. A., Ibrahim, S. I. A., Al-Saman, M. A., & Moussa, S. H. (2014). Production of fungal chitosan from date wastes and its application as biopreservative for minced meat. International Journal of Biological Macromolecules, 69, 471-475. doi: 10.1016/j.ijbiomac.2014.05.072

Tayel, A. A., Moussa, S., El-Tras, W. F., Knittel, D., Opwis, K., & Schollmeyer, E. (2010a). Anticandidal action of fungal chitosan against Candida albicans. International Journal of Biological Macromolecules, 47(4), 454-457. doi: 10.1016/j.ijbiomac.2010.06.011

Tayel, A. A., Moussa, S., Opwis, K., Knittel, D., Schollmeyer, E., & Nickisch-Hartfiel, A. (2010b). Inhibition of microbial pathogens by fungal chitosan. International Journal of Biological Macromolecules, 47(1), 10-14. doi: 10.1016/j.ijbiomac.2010.04.005

Vecchiato, S., Skopek, L., Russmayer, H., Steiger, M. G., Aldrian, A., Beer, B., Acero, E. H., & Guebitz, G. M. (2019). Microbial production of high value molecules using rayon waste material as carbon-source. New BIOTECHNOLOGY, 51, 8-13. doi: 10.1016/j.nbt.2019.01.010

Weska, R. F., Moura, J. M., Batista, L. M., Rizzi, J., & Pinto, L. A. A. (2007). Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. Journal of Food Engineering, 80(3), 749-753. doi: 10.1016/j.jfoodeng.2006.02.006

Wu, J.; Niu, Y., Jiao, Y., & Chen, Q. (2019). Fungal chitosan from Agaricus bisporus (Lange) Sing. Chaidam increased the stability and antioxidant activity of liposomes modified with biosurfactants and loading betulinic acid. International Journal of Biological Macromolecules, 123, 291-299. doi: 10.1016/j.ijbiomac.2018.11.062

Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z., & Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115-130. doi: 10.1016/j.carbpol.2014.07.007

Zininga, J. T., Puri, A. K., Govender, A., Singh, S., & Permaul, K. (2019). Concomitant production of chitosan and lipids from a newly isolated Mucor circinelloides ZSKP for biodiesel production. Bioresource Technology, 272, 545-551. doi: 10.1016/j.biortech.2018.10.035
Published
2020-09-28
How to Cite
MACHADO, Thaís Strieder et al. Alkaline process evaluation for obtaining fungal chitosan. Acta Brasiliensis, [S.l.], v. 4, n. 3, p. 168-172, sep. 2020. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/actabra/index.php/actabra/article/view/306>. Date accessed: 27 jan. 2025. doi: https://doi.org/10.22571/2526-4338306.
Section
Microbiology