Reactor photochemical characterization for application in advanced oxidative process

  • Ailton Jose Moreira Programa de Pós-Graduação em Química, Universidade Federal de São Carlos, São Paulo, São Carlos, CEP 13565-905, Brasil. http://orcid.org/0000-0003-0741-8840
  • Thales Martins Silva Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Alfenas, Minas Gerais, Poços de Caldas, Brasil http://orcid.org/0000-0001-6500-7447
  • Gian Paulo Giovanni Freschi Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Alfenas, Minas Gerais, Poços de Caldas, CEP 37715-400, Brasil http://orcid.org/0000-0001-8153-3543

Abstract

O presente estudo visa ampliar a compreensão dos processos fotoquímicos por meio do cálculo de eficiência quântica da lâmpada Hg-MDEL, além de discutir sobre a aplicação ambiental desse modelo de lâmpada em processos oxidativos avançados. Esse conjunto de informações são de imensa relevância para ampliar a aplicação das Hg-MDEL em estudos ambientais diversos. Deste modo, um reator fotoquímico composto por uma lâmpada de mercúrio sem eletrodos de descarga (Hg-MDEL) acionada por micro-ondas (MW) foi avaliado a partir de estudos actinométricos KI/KIO3. Os espectros de emissão foram caracterizados junto as regiões UV-A, UV-B, UV-C e visível por meio de um espectrorradiômetro, apresentando correlação linear com a variação de potência micro-ondas aplicada. A conversão fotoquímica de KI/KIO3 em I3- foi de até 0,073 mmol L-1 quando a concentração inicial de KI era de 0,1 mol L-1 e 0,65 mmol L-1 quando a concentração de KI era de 0,7 mol L-1, aplicando uma potência micro-ondas de 600 e 400 W, respectivamente. Estes resultados indicam que para potências mais elevadas, a emissão de fótons junto ao reator é mais significativa, contribuindo de modo ativo para a formação de I3-.

Downloads

Download data is not yet available.

References

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S. & Xu, J. (2016). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323(2016): 274–298. DOI: http://dx.doi.org/10.1016/j.jhazmat.2016.04.045
Attri, P., Kim, Y. H., Park, D. H., Park, J. H., Hong, Y. J., Uhm, H. S., Kim, K. N., Fridman. A. & Choi, E. H. (2015). Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Scientific Reports, 5(2015): 9332. DOI: http://dx.doi.org/10.1038/srep09332
Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320(2017): 608-633. DOI: http://dx.doi.org/10.1016/j.cej.2017.03.084
Bolton, J. R. & Linden, K. G., (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 3(2003): 209-215. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
Bolton, J. R., Stefan, M. I., Shaw, P. & Lykke, K. R. (2011). Determination of the quantum yields of the potassium ferrioxalate and potassium iodide–iodate actinometers and a method for the calibration of radiometer detectors. Journal of Photochemistry and Photobiology A: Chemistry, 222(2011): 166-169. DOI: http://dx.doi.org/10.1016/j.jphotochem.2011.05.017
Brazón, E. M., Piccirillo, C., Moreira, I. S., & Castro, P. M. L. (2016). Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. Journal of Environmental Management, 182 (2016): 486-495. DOI: http://dx.doi.org/10.1016/j.jenvman.2016.08.005
Campanha, M. B., Awan, A. T., Sousa, D. N. R., Grosseli, G. M., Mozeto, A. A. & Fadini, P. S. (2015). A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo state of southeast Brazil. Environmental Science and Pollution Research, 22(2015): 7936–7947. DOI: http://dx.doi.org/10.1007/s11356-014-3929-x
Cesaro, A. & Belgiorno, V. (2016). Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): A review. The Open Biotechnology Journal, 10(1): 151-172. DOI: http://dx.doi.org/10.2174/1874070701610010151
Challis, J. K., Hanson, M. L., Friesen, K. J. & Wong, C. S. (2014). A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps. Environmental Science Processes & Impacts, 16(2014): 672-696. DOI: http://dx.doi.org/10.1039/c3em00615h
Církva, V. & Relich, S. (2011). Microwave Photochemistry and Photocatalysis. Part 1: Principles and Overview. Current Organic Chemistry, 15(2): 248-264. DOI: http://dx.doi.org/10.2174/138527211793979844
Deng, Y. & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(2011): 167–176. DOI: http://dx.doi.org/10.1007/s40726-015-0015-z
Fang, T., Hofmann, R., & Bolton, J. (2018). The importance of a photon-based approach to quantum yield determinations. Journal of Photochemistry and Photobiology A: Chemistry, 357(2018): 81–84. DOI: http://dx.doi.org/10.1016/j.jphotochem.2018.02.025
Forney, L. J. & Pierson, J. A. (2003). Optimum Photolysis in Taylor–Couette Flow. AIChE Journal, 49(3): 727-733. DOI: http://dx.doi.org/10.1002/aic.690490316
Hernandez, J. M. C., Rosales, B. S. & Lasa, H. (2010). The photochemical thermodynamic efficiency factor (PTEF) in photocatalytic reactors for air treatment. Chemical Engineering Journal, 165(2010): 891–901. DOI: http://dx.doi.org/10.1016/j.cej.2010.06.034
Hong, J., Han, B., Yuan, N., & Gu, J. (2015). The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps. Journal of environmental sciences, 33(2015): 60–68. DOI: http://doi.org/10.1016/j.jes.2014.12.016
Horikoshi, S., Kajitani, M., Sato, S., Serpone, N. (2007). A novel environmental risk-free microwave discharge electrodeless lamp (MDEL) in advanced oxidation processes Degradation of the 2,4-D herbicide. Journal of Photochemistry and Photobiology A: Chemistry, 189 (2007): 355–363. DOI: http://dx.doi.org/10.1016/j.jphotochem.2007.02.027
Horikoshi, S., Matsubara, A., Takayama, S., Sato, M., Sakai, F., Kajitani, M., Abe, M. & Serpone, N. (2010). Characterization of microwave effects on metal-oxide materials: Zinc oxide and titanium dioxide. Applied Catalysis B: Environmental, 99(2010): 490-495. DOI: http://dx.doi.org/10.1016/j.apcatb.2009.07.028
Horikoshi, S., & Serpone, N. (2009). Photochemistry with microwaves. Catalysts and environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(2009): 96–110. DOI: http://dx.doi.org/10.1016/j.jphotochemrev.2009.06.001
Humayun, M., Raziq, F., Khan, A., & Luo, W. (2018). Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 11(2): 86-102. DOI: http://dx.doi.org/10.1080/17518253.2018.1440324
Li, K., Chen, T., Yan, L., Dai, Y., Huang, Z., Xiong, J., Song, D., Lv, Y., & Zeng, Z. (2013). Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422 (2013): 90-99. DOI: http://dx.doi.org/10.1016/j.colsurfa.2013.01.039
Mamaenko, A. V., Samsoni- Todorov, A. O., Zui, O. V., Yaremenko, V. A. & Goncharuk V. V. (2016). The Use of Potassium Iodide Solution as Photochemical Actinometer for Vacuum Ultraviolet Region. Journal of Water Chemistry and Technology, 38(2): 67–70. DOI: http://dx.doi.org/10.3103/S1063455X16020016
Méndez-Arriaga, F., Otsu, T., Oyama, T., Gimenez, J., Esplugas, S., Hidaka, H., & Serpone, N. (2011). Photooxidation of the antidepressant drug Fluoxetine (Prozac) in aqueous media by hybrid catalytic/ozonation processes. Water Research, 45(2011): 2782-2794. DOI: http://dx.doi.org/10.1016/j.watres.2011.02.030
Meng, L., Yanga, S., Suna, C., He, H., Xiana, Q., Li, S., Wang, G., Zhang, L., & Jiangc, D. (2017). A novel method for photo-oxidative degradation of diatrizoate in water via electromagnetic induction electrodeless lamp. Journal of Hazardous Materials, 337(2017): 34-46. DOI: http://dx.doi.org/10.1016/j.jhazmat.2017.05.005
Moreira, A. J., Borges, A. C., Gouveia, L. F. C., Macleod, T. C. O., & Freschi, G. P. G. (2017). The process of atrazine degradation, its mechanism, and the formation of metabolites using UV and UV/MW photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 347(2017): 160–167. DOI: http://dx.doi.org/10.1016/j.jphotochem.2017.07.022
Moreira, A. J., Borges, A. C., Sousa, B. B., Barbosa, L. R., Mendonça, V. R., Freschi, C. D., & Freschi, G. P. G. (2019). Microwave discharge electrodeless mercury lamp (Hg-MDEL): An energetic, mechanistic and kinetic approach to the degradation of Prozac. Journal of Environmental Chemical Engineering, 7(2019): 102916. DOI: http://dx.doi.org/10.1016/j.jece.2019.102916
Moreira, A. J., Borges, A. C., Sousa, B. B., Mendonça, V. R., Freschi, C. D., & Freschi, G. P. G. (2019a). Photodegradation of fluoxetine applying different photolytic reactors: evaluation of the process effciency and mechanism. Journal of the Brazilian Chemical Society, 30(5): 1010–1024. DOI: http://dx.doi.org/10.21577/0103-5053.20180250
Moreira, A. J., Campos, L. O., & Freschi, G. P. G. (2018). Aplicação da lâmpada de descarga de mercúrio sem eletrodo para degradação do paracetamol. Acta Brasiliensis, 2(3): 100-105. DOI: http://dx.doi.org/10.22571/2526-4338110
Moreira, A. J., Pinheiro, B. S., Araújo, A. F., & Freschi, G. P. G. (2016). Evaluation of atrazine degradation applied to different energy systems. Springer, 23(2016):18502-18511. DOI: http://dx.doi.org/10.1007/s11356-016-6831-x
Moreira, N. F. F., Sousa, J. M., Macedo, G., Ribeiro, A. R., Barreiros, L., Pedrosa, M., Faria, J. L., Pereira, M. F. R., Castro-Silva, S., Segundo, M. A., Manaia C. M., Nunes, O. C., & Silva, A. M. T. (2016). Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic esistance genes and estrogenic activity. Water Research, 94(2016): 10-22. DOI: http://dx.doi.org/10.1016/j.watres.2016.02.003
Perini, J. A., L, Silva, B. C., Tonetti, A. L., & Nogueira, R. F. P. (2016). Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environmental Science and Pollution Research – Springer, 24 (7): 6233-6240. DOI: http://dx.doi.org/10.1007/s11356-016-7416-4

Rahn, R. O. (1997). Potassium Iodide as a Chemical Actinometer for 254 nm Radiation: Use of Iodate as an Electron Scavenger. Photochemistry and Photobiology, 66(4): 450-455. DOI: http://dx.doi.org/10.1111/j.1751-1097.1997.tb03172.x
Rahn, R. O., Stefany, M. I., Bolton J. R., Goren, E., Sha, P., & Lykke, K. R. (2003). Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration. Photochemistry and Photobiology, 78(2): 146–152. DOI: http://dx.doi.org/10.1562/0031-8655(2003)0780146QOTIC2.0.CO;2

Wang, A., Zhang, Y., Zhong, H., Chen, Y., Tian, X., Li, D., & Li, J. (2018). Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation. Journal of Hazardous Materials, 342(2018): 364-374. DOI: http://dx.doi.org/10.1016/j.jhazmat.2017.08.050

Xu, L.J., Chu, W., & Grahamb, N. (2014). Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms. Journal of Hazardous Materials, 275(2014): 166-174. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.05.007
Published
2019-09-30
How to Cite
MOREIRA, Ailton Jose; SILVA, Thales Martins; FRESCHI, Gian Paulo Giovanni. Reactor photochemical characterization for application in advanced oxidative process. Acta Brasiliensis, [S.l.], v. 3, n. 3, p. 124-130, sep. 2019. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/240>. Date accessed: 03 july 2024. doi: https://doi.org/10.22571/2526-4338240.
Section
Environmental Chemistry