Adsorption of hexavalent chromium on a coal beneficiation tailing material in batch and fixed-bed column

  • Keila Guerra Pacheco Nunes Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0001-7332-096X
  • Nathali Ribeiro Batistel Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0001-5844-6783
  • Dafne Barbosa Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0002-1236-5213
  • Ivan Reis Rosa Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0002-3104-1783
  • Ivone Vanessa Jurado Davila Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0002-7578-9152
  • Liliana Amaral Féris Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0002-5900-4474

Abstract

The objective of this work is to utilize a coal beneficiation tailing from Moatize (Mozambique) for the adsorption of hexavalent chromium from water in batch model and fixed bed column. Coal waste was used in particle size between 0.7 and 1.5 mm. The effects of pH, contact time and solid adsorbent concentration were analyzed by batch experiments. The results indicated that it was possible to obtain 98.6% of removal under the experimental conditions of pH 2, 10 h of process and 8 g.L-1 of solid adsorbent. From these experimental results, equilibrium isotherms were build and Langmuir and Sips models presented a better fit to the experimental data. The adsorption of chromium hexavalent from aqueous solution onto coal waste was investigated in a fixed bed column at 298 K. The effects of the inlet concentration, feed flow rate, bed depth on adsorption were investigated. In general, the evaluated parameters improved as a results increase in a Z (bed deep) and decreases in Q (feed flow rate). These performance metrics also improved as C0 (inlet concentration) was increased.

Downloads

Download data is not yet available.

References

Abdolali, A., Ngo, H. H., Guo, W., Zhou, J. L., Zhang, J., Liang, S., & Liu, Y. (2017). Application of a breakthrough biosorbent for removing heavy metalsfrom synthetic and real wastewaters in a lab − scale continuous A continuous fixed − bed study was carried out utilising a breakthrough biosorbent. Bioresource Technology, 229, 78–87. doi: 10.1016/j.biortech.2017.01.016

Acheampong, M. A., Pakshirajan, K., Annachhatre, A. P., & Lens, P. N. L. (2013). Removal of Cu ( II ) by biosorption onto coconut shell in fixed-bed column systems. Journal of Industrial and Engineering Chemistry 19(3), 841–848. doi: 10.1016/j.jiec.2012.10.029

Canteli, A. M. D., Carpiné, D., Scheer, A. de P., Mafra, M. R., & Igarashi-Mafra, L. (2014). Fixed-bed column adsorption of the coffee aroma compound benzaldehyde from aqueous solution onto granular activated carbon from coconut husk. LWT - Food Science and Technology, 59(2P1), 1025–1032. doi:10.1016/j.lwt.2014.06.015

Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., & Fu, K. (2012). Adsorption of hexavalent chromium from aqueous solution by modified corn stalk : A fixed-bed column study. Bioresource Technology, 113, 114–120. doi:10.1016/j.biortech.2011.11.110

Cheng, Q., Wang, C., Doudrick, K., & Chan, C. K. (2015). Hexavalent chromium removal using metal oxide photocatalysts. Applied Catalysis B: Environmental, 176–177, 740–748. doi:10.1016/j.apcatb.2015.04.047

Dehghani, M. H., Sanaei, D., Ali, I., & Bhatnagar, A. (2016). Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. Journal of Molecular Liquids, 215, 671–679. doi:10.1016/j.molliq.2015.12.057

Duarte, A. L., DaBoit, K., Oliveira, M. L. S., Teixeira, E. C., Schneider, I. L., & Silva, L. F. O. (2018). Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers, 10(3), 927-939. doi:10.1016/j.gsf.2018.05.005

Ko, D. C. K., Porter, J. F., & McKay, G. (2001). Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Research, 35(16), 3876–3886. doi:10.1016/S0043-1354(01)00114-2

Koloczek, H., Jarosław, C., & Zukowski, W. (2015). Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters. Environmental Science and Pollution Research, 23(1), 527-534. Recovered from https://link.springer.com/article/10.1007%2Fs11356-015-5285-x
Kundu, S., & Gupta, A. K. (2007). As(III) removal from aqueous medium in fixed bed using iron oxide-coated
cement (IOCC): Experimental and modeling studies. Chemical Engineering Journal, 129(1–3), 123–131. doi:10.1016/j.cej.2006.10.014

Maass, D., Valério, A., Lourenço, L. A., de Oliveira, D., & Hotza, D. (2019). Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. Hydrometallurgy, 184, 199–205. doi:10.1016/j.hydromet.2019.01.010

Oliveira, C. M., Machado, C. M., Duarte, G. W., & Peterson, M. (2016). Beneficiation of pyrite from coal mining. Journal of Cleaner Production, 139, 821–827. doi:10.1016/j.jclepro.2016.08.124

Oliveira, M. L. S., Da Boit, K., Schneider, I. L., Teixeira, E. C., Crissien Borrero, T. J., & Silva, L. F. O. (2018). Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. Journal of Cleaner Production, 188, 662–669. doi:10.1016/j.jclepro.2018.04.050

Samuel, M. S., Bhattacharya, J., Raj, S., Santhanam, N., Singh, H., & Pradeep Singh, N. D. (2019). Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. International Journal of Biological Macromolecules, 121, 285–292. doi:10.1016/j.ijbiomac.2018.09.170

Sandeep, G., Vijayalatha, K.R., Anitha, T. (2019) Heavy metals and its impact in vegetable crops. Int. J. Chem. Stud., 7(1), pp. 1612-1621.

Scheer, A. D. P., Mafra, M. R., Marcos, A., Canteli, D., Carpin, D., & Igarashi-mafra, L. (2014). Fixed-bed column adsorption of the coffee aroma compound benzaldehyde from aqueous solution onto granular activated carbon from coconut husk. LWT - Food Science and Technology, 59(2), 1025-1032. doi:10.1016/j.lwt.2014.06.015

Singh, T. S., & Pant, K. K. (2006). Experimental and modelling studies on fixed bed adsorption of As(III) ions from aqueous solution. Separation and Purification Technology, 48(3), 288–296. doi:10.1016/j.seppur.2005.07.035
Swarnalatha, S., Dandaiah, S., Srimurali b, M., & Sekaran, G. (2008). Safe disposal of toxic chrome buffing dust generated from leather industries. Journal of Hazardous Materials 150(2) 290–299. doi:10.1016/j.jhazmat.2007.04.100

Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 225(1–3), 13–28. doi:10.1016/j.desal.2007.07.005

Zou, W., Zhao, L., & Zhu, L. (2013). Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: Experiments and prediction of breakthrough curves. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 717–727. Recovered from https://link.springer.com/article/10.1007%2Fs10967-012-1950-4
Published
2020-05-25
How to Cite
NUNES, Keila Guerra Pacheco et al. Adsorption of hexavalent chromium on a coal beneficiation tailing material in batch and fixed-bed column. Acta Brasiliensis, [S.l.], v. 4, n. 2, p. 121-127, may 2020. ISSN 2526-4338. Available at: <http://revistas.ufcg.edu.br/actabra/index.php/actabra/article/view/209>. Date accessed: 05 nov. 2024. doi: https://doi.org/10.22571/2526-4338209.
Section
Environmental Chemistry