Aplicação da lâmpada de descarga de mercúrio sem eletrodo para degradação do paracetamol
Resumo
Lâmpada de descarga de mercúrio sem eletrodo (Hg-EDL) foi aplicada em estudos de degradação fotolítica e fotocatalítica para avaliar o potencial de degradação de uma solução de Paracetamol 10 mg L-1. A fotodegradação (fotólise e fotocatálise) foi conduzida em reator UV/MW, com potência microondas fixa (200W, pH ̴ 7) e diferentes tempos de irradiação (0,083 a 2,0 min.). Após irradiadas, as amostras foram analisadas através de espectrofotometria UV/Vis para quantificação do fármaco. Houve a remoção de até 70,1% no ensaio fotolítico com o tempo de 2 min., enquanto para o processo fotocatalítico (aplicando suspensão de 1 g L-1 dos semicondutores) os resultados de remoção foram da ordem de 60%. A cinética de primeira ordem foi aplicada, sendo determinada uma constante k = 0,602 min-1 e r2 = 0,993, evidenciando um ajuste adequado a cinética de ordem 1. Assim, o reator UV/MW demonstra elevada eficiência no processo de degradação do paracetamol, uma vez que elevada taxa de remoção e valor elevado de constante cinética de degradação foram obtidas para o respectivo sistema. O foto reator avaliado pode ser explorado em ensaios de degradação com outros compostos, possibilitando a avaliação de sua eficiência frente a degradação de uma maior variedade de contaminantes emergentes.
##plugins.generic.usageStats.downloads##
Referências
Bai, Y.; Cui, Z.; Su, R.; Qu, K. 2018. Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal Waters. Chemosphere, 205(Ago.):108-117.
Bila, D.M.; Dezotti, M. 2003. Fármacos no Meio Ambiente. Química Nova, 26(4): 523-530.
Brasil. 2016. Diagnóstico dos Serviços de Água e Esgotos – 2014. Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental – SNSA. Sistema Nacional de Informações sobre Saneamento e Ministério das Cidades - SNSA/MCIDADES), Brasília:, 212p. Disponível: http://www.epsjv.fiocruz.br/upload/Diagnostico_AE2014.pdf. Acesso: 20 jul. 2018.
Církva, V.; Relich, S. 2011. Microwave Photochemistry and Photocatalysis. Part 1: Principles and Overview. Current Organic Chemistry, 15(2): 248-264.
Domingos, H. 2010. Paracetamol, C8H9NO2. Química Nova Interativa. 2010. Disponível em:
Fioreze, M.; Santos, E.P. Schmachtenberg, N. 2014. Processos oxidativos avançados: fundamentos e aplicação ambiental. Revista Eletronica em Gestão, Educação e Tecnologia Ambiental, 18(1): 79-91.
Hong, J.; Han, B.; Yuan, N.; Gu, J. 2015 The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps. Journal of Envronmental Science, 33(Jul.): 60-68.
Kemarya, M.E.; Sobhya, S.; Daly, S.E.; Shafic, A.A. 2011. Inclusion of Paracetamol into - cyclodextrin nanocavities in solution and in the solid state. Spectrochimica Acta Part A, 79 (5): 1904-1908.
Martignac, M.; Oliveros, E.; Maurette, M.T.; Claparols, C.; Marquié, F.B. 2013. Mechanistic pathways of the photolysis of paracetamol in aqueous solution: an example of photo-Fries rearrangement. Photochem. Photobiol. Sci., 12(3): 527-535.
Melo, S.A.S.; Trovó, A.G.; Bautitz, I.R.; Nogueira, R.F.P. 2009. Degradação de fármacos residuais por processos oxidativos avançados. Química Nova, São Paulo, 32(1): 188-197.
Moreira, A.J.; Borges, A.C.; Gouveia, L.F.C.; Macleod, T.C.O., Freschi, G.P.G. 2017. The process of atrazine degradation, its mechanism, and the formation of metabolites using UV and UV/MW photolysis. Journal of Photochemistry and Photobiology A: Chemistry 347(1): 160-167.
Napoleão, D.C.; Zaidan, L.E.M.C.; Salgado, J.B.A.; Sales, R.V.L.; Silva, V.L. 2015. Degradação do Contaminante Emergente Paracetamol Empregando Processos Oxidativos Avançados. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental Santa Maria, 19(3): 725-734.
Pereira, B.V.R. 2018. Efeito agudo e crônico dos fármacos Paracetamol e Propranolol em diferentes biomarcadores de uma espécie de peixe neotropical. 100 f. Dissertação de Mestrado. Universidade Federal de São Carlos, Sorocaba.
Steiner, M.G.; Babbs, C.F. 1990. Quantitation of the Hydroxyl Radical by Reaction with Dimethyl Sulfoxide. Archives of biochemistry and biophysics, 278(2), 478 - 481.
Ta, N.; Hong, J.; Liu, T.; Sun, C. 2016. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution. Journal of Hazardous Materials, 138(1): 187-194.
Tong, A.Y.C.; Braund, R.; Warren, D.S.; Peake, B.M. 2012. TiO2-assisted photodegradation of pharmaceuticals - a review. Central European Journal of Chemistry, 10(4): 989-1027.
Treml, J.; Smejkal, K. 2016. Flavonoids as Potent Scavengers of Hydroxyl
Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4): 720-738.
Trovó, A.G.; Nogueira, R.F.P.; Agüera, A.; Alba, A.R.F.; Malato, S. 2012. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species. Water Resource, 46(16), 5374-5380.
Valdez, H.C.A.; Jiménez, G.G.; Granados, S.G.; Léon, C.P. 2012. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere, 89(10), 1195-1201.
Xiong, P.; Hu, J. 2012. Degradation of acetaminophen by UVA/LED/TiO2 process. Separation and Purification Technology, 91(1): 89-95.
Wang, A.; Zhang, Y.; Zhong, H.; Chen, Y.; Tian, X.; Li, D.; Li, J. 2018. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation. Journal of Hazardous Materials, 342(1): 364-374.
Yavas, A.Z.; Mizukoshi, Y.; Maeda, Y.; Ince, N.H. 2015. Supporting of pristine TiO2 with noble metals to enhance the oxidation and mineralization of paracetamol by sonolysis and sonophotolysis. Applied Catalysis B: Environmental, 172-173(Ago.): 7-17.
Yavas, A.Z.; Ince, N.H. 2016. Enhanced photo-degradation of paracetamol on n-platinum-loaded TiO2: The effect of ultrasound and °OH/hole scavengers. Chemosphere, 162(Nov.): 324-332.